BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32885064)

  • 21. Effects of fly ash application on plant biomass and element accumulations: a meta-analysis.
    Yu CL; Deng Q; Jian S; Li J; Dzantor EK; Hui D
    Environ Pollut; 2019 Jul; 250():137-142. PubMed ID: 30991282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytoremediation of soil heavy metals (Cd and Zn) by castor seedlings: Tolerance, accumulation and subcellular distribution.
    He C; Zhao Y; Wang F; Oh K; Zhao Z; Wu C; Zhang X; Chen X; Liu X
    Chemosphere; 2020 Aug; 252():126471. PubMed ID: 32220713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ricinus communis L. A Value Added Crop for Remediation of Cadmium Contaminated Soil.
    Bauddh K; Singh K; Singh RP
    Bull Environ Contam Toxicol; 2016 Feb; 96(2):265-9. PubMed ID: 26464392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in soil microbial community functionality and structure in a metal-polluted site: The effect of digestate and fly ash applications.
    Garcia-Sánchez M; Garcia-Romera I; Cajthaml T; Tlustoš P; Száková J
    J Environ Manage; 2015 Oct; 162():63-73. PubMed ID: 26225934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Jatropha curcas: a potential crop for phytoremediation of coal fly ash.
    Jamil S; Abhilash PC; Singh N; Sharma PN
    J Hazard Mater; 2009 Dec; 172(1):269-75. PubMed ID: 19640648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of medicinal plants colonizing abundantly on metal-enriched fly ash deposits: phytoremediation prospective.
    Yadav S; Pandey VC; Singh L
    Int J Phytoremediation; 2024; 26(9):1518-1525. PubMed ID: 38563239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of different treatments of fly ash and mining soil on growth and antioxidant protection of Indian wild rice.
    Bisoi SS; Mishra SS; Barik J; Panda D
    Int J Phytoremediation; 2017 May; 19(5):446-452. PubMed ID: 27739878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants.
    Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F
    Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response surface method for optimization of process variables for bioaccumulation of metals with Jatropha curcas on fly ash-amended soil.
    Jain S; Tembhurkar AR
    Environ Monit Assess; 2023 Apr; 195(5):580. PubMed ID: 37069471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of fly ash application on soil microbial response and heavy metal accumulation in soil and rice plant.
    Nayak AK; Raja R; Rao KS; Shukla AK; Mohanty S; Shahid M; Tripathi R; Panda BB; Bhattacharyya P; Kumar A; Lal B; Sethi SK; Puri C; Nayak D; Swain CK
    Ecotoxicol Environ Saf; 2015 Apr; 114():257-62. PubMed ID: 24836933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of nitrogen forms and application rates on the phytoextraction of copper by castor bean (Ricinus communis L.).
    Zhou X; Huang G; Liang D; Liu Y; Yao S; Ali U; Hu H
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):647-656. PubMed ID: 31808081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of biotransfer and bioaccumulation of cadmium, lead and zinc from fly ash amended soil in mustard-aphid-beetle food chain.
    Dar MI; Green ID; Naikoo MI; Khan FA; Ansari AA; Lone MI
    Sci Total Environ; 2017 Apr; 584-585():1221-1229. PubMed ID: 28153402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India.
    Pandey SK; Bhattacharya T; Chakraborty S
    Int J Phytoremediation; 2016; 18(1):87-93. PubMed ID: 26147810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal accumulation and growth performance of Phaseolus vulgaris grown in fly ash amended soil.
    Gupta AK; Dwivedi S; Sinha S; Tripathi RD; Rai UN; Singh SN
    Bioresour Technol; 2007 Dec; 98(17):3404-7. PubMed ID: 17451948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of iron oxide nanoparticles on Fe and heavy metal accumulation in castor (Ricinus communis L.) plants and the soil aggregate.
    Zhang H; Zhang Y
    Ecotoxicol Environ Saf; 2020 Sep; 200():110728. PubMed ID: 32460048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth performance, metal accumulation and biochemical responses of Palak (Beta vulgaris L. var. Allgreen H-1) grown on soil amended with sewage sludge-fly ash mixtures.
    Sharma B; Kothari R; Singh RP
    Environ Sci Pollut Res Int; 2018 May; 25(13):12619-12640. PubMed ID: 29468393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth and elemental accumulation by canola on soil amended with coal fly ash.
    Yunusa IA; Manoharan V; DeSilva DL; Eamus D; Murray BR; Nissanka SP
    J Environ Qual; 2008; 37(3):1263-70. PubMed ID: 18453446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil.
    Bauddh K; Singh RP
    Int J Phytoremediation; 2012 Sep; 14(8):772-85. PubMed ID: 22908643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytoremediation Potential, Photosynthetic and Antioxidant Response to Arsenic-Induced Stress of
    Gajić G; Djurdjević L; Kostić O; Jarić S; Stevanović B; Mitrović M; Pavlović P
    Plants (Basel); 2020 May; 9(5):. PubMed ID: 32456107
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Phytoremediation Potential and Physiological Adaptive Response of
    Kostić O; Jarić S; Gajić G; Pavlović D; Mataruga Z; Radulović N; Mitrović M; Pavlović P
    Plants (Basel); 2022 Mar; 11(7):. PubMed ID: 35406835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.