BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 32886093)

  • 1. Characterizing therapeutic signatures of transcription factors in cancer by incorporating profiles in compound treated cells.
    Jung J
    Bioinformatics; 2021 May; 37(7):1008-1014. PubMed ID: 32886093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deconvoluting essential gene signatures for cancer growth from genomic expression in compound-treated cells.
    Jung J; Kang Y; Paik H; Kwon M; Yu H; Lee D
    Bioinformatics; 2019 Apr; 35(7):1167-1173. PubMed ID: 30184045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous graph embedding model for predicting interactions between TF and target gene.
    Huang YA; Pan GQ; Wang J; Li JQ; Chen J; Wu YH
    Bioinformatics; 2022 Apr; 38(9):2554-2560. PubMed ID: 35266510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-transcription factor interactions and their combined effect on target gene expression in colon cancer cases.
    Mullany LE; Herrick JS; Wolff RK; Stevens JR; Samowitz W; Slattery ML
    Genes Chromosomes Cancer; 2018 Apr; 57(4):192-202. PubMed ID: 29226599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disrupted cooperation between transcription factors across diverse cancer types.
    Wang J; Liu Q; Sun J; Shyr Y
    BMC Genomics; 2016 Aug; 17():560. PubMed ID: 27496222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate differential analysis of transcription factor activity from gene expression.
    Amin V; Ağaç D; Barnes SD; Çobanoğlu MC
    Bioinformatics; 2019 Dec; 35(23):5018-5029. PubMed ID: 31099391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of topic models to a compendium of ChIP-Seq datasets uncovers recurrent transcriptional regulatory modules.
    Yang G; Ma A; Qin ZS; Chen L
    Bioinformatics; 2020 Apr; 36(8):2352-2358. PubMed ID: 31899481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring coregulation of transcription factors and microRNAs in breast cancer.
    Wu JH; Sun YJ; Hsieh PH; Shieh GS
    Gene; 2013 Apr; 518(1):139-44. PubMed ID: 23246694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing transcription factor combinatorics in different promoter classes and in enhancers.
    Vandel J; Cassan O; Lèbre S; Lecellier CH; Bréhélin L
    BMC Genomics; 2019 Feb; 20(1):103. PubMed ID: 30709337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions.
    Zhang J; Le TD; Liu L; He J; Li J
    Gene; 2016 Feb; 577(1):55-64. PubMed ID: 26611531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo motif discovery facilitates identification of interactions between transcription factors in Saccharomyces cerevisiae.
    Chen MJ; Chou LC; Hsieh TT; Lee DD; Liu KW; Yu CY; Oyang YJ; Tsai HK; Chen CY
    Bioinformatics; 2012 Mar; 28(5):701-8. PubMed ID: 22238267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast.
    Wu WS; Lai FJ
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEPIC 2-an extended framework for transcription factor binding prediction and integrative epigenomic analysis.
    Schmidt F; Kern F; Ebert P; Baumgarten N; Schulz MH
    Bioinformatics; 2019 May; 35(9):1608-1609. PubMed ID: 30304373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TopicNet: a framework for measuring transcriptional regulatory network change.
    Lou S; Li T; Kong X; Zhang J; Liu J; Lee D; Gerstein M
    Bioinformatics; 2020 Jul; 36(Suppl_1):i474-i481. PubMed ID: 32657410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of transcriptome mechanism associated with osteoporosis explored by microarray analysis.
    Liu Y; Li Y; Liu X; Wang CS
    Exp Ther Med; 2019 May; 17(5):3459-3464. PubMed ID: 31007729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NetProphet 2.0: mapping transcription factor networks by exploiting scalable data resources.
    Kang Y; Liow HH; Maier EJ; Brent MR
    Bioinformatics; 2018 Jan; 34(2):249-257. PubMed ID: 28968736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motif comparison based on similarity of binding affinity profiles.
    Lambert SA; Albu M; Hughes TR; Najafabadi HS
    Bioinformatics; 2016 Nov; 32(22):3504-3506. PubMed ID: 27466627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets.
    Zhang Q; Liu W; Zhang HM; Xie GY; Miao YR; Xia M; Guo AY
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):120-128. PubMed ID: 32858223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.