These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 32886100)

  • 1. Genetically encoded live-cell sensor for tyrosinated microtubules.
    Kesarwani S; Lama P; Chandra A; Reddy PP; Jijumon AS; Bodakuntla S; Rao BM; Janke C; Das R; Sirajuddin M
    J Cell Biol; 2020 Oct; 219(10):. PubMed ID: 32886100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EML2-S constitutes a new class of proteins that recognizes and regulates the dynamics of tyrosinated microtubules.
    Hotta T; McAlear TS; Yue Y; Higaki T; Haynes SE; Nesvizhskii AI; Sept D; Verhey KJ; Bechstedt S; Ohi R
    Curr Biol; 2022 Sep; 32(18):3898-3910.e14. PubMed ID: 35963242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtubule depolymerization in rat seminiferous epithelium is associated with diminished tyrosination of alpha-tubulin.
    Correa LM; Miller MG
    Biol Reprod; 2001 Jun; 64(6):1644-52. PubMed ID: 11369590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. α-tubulin tail modifications regulate microtubule stability through selective effector recruitment, not changes in intrinsic polymer dynamics.
    Chen J; Kholina E; Szyk A; Fedorov VA; Kovalenko I; Gudimchuk N; Roll-Mecak A
    Dev Cell; 2021 Jul; 56(14):2016-2028.e4. PubMed ID: 34022132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubule-associated protein 1B interaction with tubulin tyrosine ligase contributes to the control of microtubule tyrosination.
    Utreras E; Jiménez-Mateos EM; Contreras-Vallejos E; Tortosa E; Pérez M; Rojas S; Saragoni L; Maccioni RB; Avila J; González-Billault C
    Dev Neurosci; 2008; 30(1-3):200-10. PubMed ID: 18075266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay between stochastic enzyme activity and microtubule stability drives detyrosination enrichment on microtubule subsets.
    Tang Q; Sensale S; Bond C; Xing J; Qiao A; Hugelier S; Arab A; Arya G; Lakadamyali M
    Curr Biol; 2023 Dec; 33(23):5169-5184.e8. PubMed ID: 37979580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tyrosination of α-tubulin controls the initiation of processive dynein-dynactin motility.
    McKenney RJ; Huynh W; Vale RD; Sirajuddin M
    EMBO J; 2016 Jun; 35(11):1175-85. PubMed ID: 26968983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Tubulin Code in Microtubule Dynamics and Information Encoding.
    Roll-Mecak A
    Dev Cell; 2020 Jul; 54(1):7-20. PubMed ID: 32634400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential association of tau with subsets of microtubules containing posttranslationally-modified tubulin variants in neuroblastoma cells.
    Saragoni L; Hernández P; Maccioni RB
    Neurochem Res; 2000 Jan; 25(1):59-70. PubMed ID: 10685605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STOP (stable-tubule-only-polypeptide) is preferentially associated with the stable domain of axonal microtubules.
    Slaughter T; Black MM
    J Neurocytol; 2003 May; 32(4):399-413. PubMed ID: 14724383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Tubulin Code, from Molecules to Health and Disease.
    McKenna ED; Sarbanes SL; Cummings SW; Roll-Mecak A
    Annu Rev Cell Dev Biol; 2023 Oct; 39():331-361. PubMed ID: 37843925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtubule Dysfunction: A Common Feature of Neurodegenerative Diseases.
    Sferra A; Nicita F; Bertini E
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33027950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated regulation of tubulin tyrosination and microtubule stability by human α-tubulin isotypes.
    Fu G; Yan S; Khoo CJ; Chao VC; Liu Z; Mukhi M; Hervas R; Li XD; Ti SC
    Cell Rep; 2023 Jun; 42(6):112653. PubMed ID: 37379209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The detyrosination/re-tyrosination cycle of tubulin and its role and dysfunction in neurons and cardiomyocytes.
    Sanyal C; Pietsch N; Ramirez Rios S; Peris L; Carrier L; Moutin MJ
    Semin Cell Dev Biol; 2023 Mar; 137():46-62. PubMed ID: 34924330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Microtubules: functional polymorphisms of tubulin and associated proteins (structural and motor MAP's)].
    Regnard C; Audebert S; Boucher D; Larcher JC; Eddé B; Denoulet P
    C R Seances Soc Biol Fil; 1996; 190(2-3):255-68. PubMed ID: 8869236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton.
    Janke C; Kneussel M
    Trends Neurosci; 2010 Aug; 33(8):362-72. PubMed ID: 20541813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of motor landing and processivity by the CAP-Gly domain in the KIF13B tail.
    Fan X; McKenney RJ
    Nat Commun; 2023 Aug; 14(1):4715. PubMed ID: 37543636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical modeling of the microtubule detyrosination/tyrosination cycle for cell-based drug screening design.
    Grignard J; Lamamy V; Vermersch E; Delagrange P; Stephan JP; Dorval T; Fages F
    PLoS Comput Biol; 2022 Jun; 18(6):e1010236. PubMed ID: 35759459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic Profiling and Functional Characterization of Multiple Post-Translational Modifications of Tubulin.
    Liu N; Xiong Y; Ren Y; Zhang L; He X; Wang X; Liu M; Li D; Shui W; Zhou J
    J Proteome Res; 2015 Aug; 14(8):3292-304. PubMed ID: 26165356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubule-associated protein MAP7 promotes tubulin posttranslational modifications and cargo transport to enable osmotic adaptation.
    Shen Y; Ori-McKenney KM
    Dev Cell; 2024 Jun; 59(12):1553-1570.e7. PubMed ID: 38574732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.