These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 32886150)
1. Application of direct analysis in real time to study chemical vapor generation mechanisms: reduction of dimethylarsinic(V) acid with aqueous NaBH Pagliano E; Onor M; Mester Z; D'Ulivo A Anal Bioanal Chem; 2020 Nov; 412(27):7603-7613. PubMed ID: 32886150 [TBL] [Abstract][Full Text] [Related]
2. Demethylation of Methylated Arsenic Species during Generation of Arsanes with Tetrahydridoborate(1-) in Acidic Media. Marschner K; Musil S; Dědina J Anal Chem; 2016 Jun; 88(12):6366-73. PubMed ID: 27240643 [TBL] [Abstract][Full Text] [Related]
3. Unveiling the mechanisms behind the chemical vapor generation of plumbane for trace analysis of lead. Pitzalis E; Campanella B; Bonini R; Onor M; D'Ulivo A Anal Chim Acta; 2023 Aug; 1269():341427. PubMed ID: 37290860 [TBL] [Abstract][Full Text] [Related]
4. Behavior and kinetic of hydrolysis of amine boranes in acid media employed in chemical vapor generation. D'Ulivo L; Spiniello R; Onor M; Campanella B; Mester Z; D'Ulivo A Anal Chim Acta; 2018 Jan; 998():28-36. PubMed ID: 29153083 [TBL] [Abstract][Full Text] [Related]
5. A mass spectrometric study of hydride generated arsenic species identified by direct analysis in real time (DART) following cryotrapping. Matoušek T; Kratzer J; Sturgeon RE; Mester Z; Musil S Anal Bioanal Chem; 2021 May; 413(13):3443-3453. PubMed ID: 33755769 [TBL] [Abstract][Full Text] [Related]
6. Chemical vapor generation of arsane in the presence of L-cysteine. Mechanistic studies and their analytical feedback. Pitzalis E; Ajala D; Onor M; Zamboni R; D'Ulivo A Anal Chem; 2007 Aug; 79(16):6324-33. PubMed ID: 17636881 [TBL] [Abstract][Full Text] [Related]
7. Application of direct analysis in real time to the study of chemical vapor generation mechanisms: identification of intermediate hydrolysis products of amine-boranes. D'Ulivo L; Pagliano E; Onor M; Mester Z; D'Ulivo A Anal Bioanal Chem; 2019 Mar; 411(8):1569-1578. PubMed ID: 30687887 [TBL] [Abstract][Full Text] [Related]
8. Efficient generation of volatile species for cadmium analysis in seafood and rice samples by a modified chemical vapor generation system coupled with atomic fluorescence spectrometry. Yang XA; Chi MB; Wang QQ; Zhang WB Anal Chim Acta; 2015 Apr; 869():11-20. PubMed ID: 25818135 [TBL] [Abstract][Full Text] [Related]
9. Use of perchloric acid as a reaction medium for speciation of arsenic by hydride generation-atomic absorption spectrometry. Shraim A; Chiswell B; Olszowy H Analyst; 2000 May; 125(5):949-53. PubMed ID: 10885059 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Direct Analysis in Real Time - High Resolution Mass Spectrometry (DART-HRMS) for WEEE specific substance determination in polymeric samples. Puype F; Ackerman LK; Samsonek J Chemosphere; 2019 Oct; 232():481-488. PubMed ID: 31170651 [TBL] [Abstract][Full Text] [Related]
11. Optimization of instrument conditions for the analysis for mercury, arsenic, antimony and selenium by atomic absorption spectroscopy. Mohammed E; Mohammed T; Mohammed A MethodsX; 2018; 5():824-833. PubMed ID: 30112290 [TBL] [Abstract][Full Text] [Related]
12. Efficient generation of volatile cadmium species using Ti(III) and Ti(IV) and application to determination of cadmium by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS). Arslan Z; Yilmaz V; Rose L Microchem J; 2015 Nov; 123():170-178. PubMed ID: 26251554 [TBL] [Abstract][Full Text] [Related]
13. Chemical vapor generation atomic spectrometry using amineboranes and cyanotrihydroborate(III) reagents. D'Ulivo A; Loreti V; Onor M; Pitzalis E; Zamboni R Anal Chem; 2003 Jun; 75(11):2591-600. PubMed ID: 12948125 [TBL] [Abstract][Full Text] [Related]
14. Chemical generation of arsane and methylarsanes with amine boranes. Potentialities for nonchromatographic speciation of arsenic. Pitzalis E; Onor M; Mascherpa MC; Pacchi G; Mester Z; D'Ulivo A Anal Chem; 2014 Feb; 86(3):1599-607. PubMed ID: 24428590 [TBL] [Abstract][Full Text] [Related]
15. Determination of As, Se, and Hg in fuel samples by in-chamber chemical vapor generation ICP OES using a Flow Blurring® multinebulizer. García M; Aguirre MÁ; Canals A Anal Bioanal Chem; 2017 Sep; 409(23):5481-5490. PubMed ID: 28687885 [TBL] [Abstract][Full Text] [Related]
17. Combined use of direct analysis in real-time/Orbitrap mass spectrometry and micro-Raman spectroscopy for the comprehensive characterization of real explosive samples. Bridoux MC; Schwarzenberg A; Schramm S; Cole RB Anal Bioanal Chem; 2016 Aug; 408(21):5677-5687. PubMed ID: 27318472 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous determination of arsenic, antimony, bismuth and mercury in geological materials by vapor generation-four-channel non-dispersive atomic fluorescence spectrometry. Li Z; Yang X; Guo Y; Li H; Feng Y Talanta; 2008 Jan; 74(4):915-21. PubMed ID: 18371728 [TBL] [Abstract][Full Text] [Related]
19. Diethyldithiocarbamate enhanced chemical generation of volatile palladium species, their characterization by AAS, ICP-MS, TEM and DART-MS and proposed mechanism of action. Vyhnanovský J; Kratzer J; Benada O; Matoušek T; Mester Z; Sturgeon RE; Dědina J; Musil S Anal Chim Acta; 2018 Apr; 1005():16-26. PubMed ID: 29389315 [TBL] [Abstract][Full Text] [Related]
20. The Ion Source of Nitrogen Direct Analysis in Real-Time Mass Spectrometry as a Highly Efficient Reactor: Generation of Reactive Oxygen Species. Su R; Yu W; Sun K; Yang J; Chen C; Lian W; Liu S; Yang H J Am Soc Mass Spectrom; 2019 Apr; 30(4):581-587. PubMed ID: 30784004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]