These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3288618)

  • 1. Identification of a novel stress-inducible glycoprotein in Saccharomyces cerevisiae. I. Preliminary characterization.
    Verma R; Iida H; Pardee AB
    J Biol Chem; 1988 Jun; 263(18):8569-75. PubMed ID: 3288618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cAMP promotes the synthesis in early G1 of gp115, a yeast glycoprotein containing glycosyl-phosphatidylinositol.
    Grandori R; Popolo L; Vai M; Alberghina L
    J Biol Chem; 1990 Aug; 265(24):14315-20. PubMed ID: 2167314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of expression of the stress-inducible p118 of Saccharomyces cerevisiae by cAMP. II. A study of p118 expression in mutants of the cAMP cascade.
    Verma R; Iida H; Pardee AB
    J Biol Chem; 1988 Jun; 263(18):8576-82. PubMed ID: 2837458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a glycoprotein involved in cell cycle progression in yeast.
    Popolo L; Vai M; Alberghina L
    J Biol Chem; 1986 Mar; 261(8):3479-82. PubMed ID: 3512559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the protein synthesis pattern during a nutritional shift-down transition in Saccharomyces cerevisiae.
    Rodriguez F; Popolo L; Vai M; LacanĂ  E; Alberghina L
    Exp Cell Res; 1990 Apr; 187(2):315-9. PubMed ID: 2180735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a novel secreted glycoprotein of the yeast Saccharomyces cerevisiae stimulated by heat shock.
    Lupashin VV; Kononova SV; Ratner YeN ; Tsiomenko AB; Kulaev IS
    Yeast; 1992 Mar; 8(3):157-69. PubMed ID: 1574924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat shock protein synthesis and trehalose accumulation are not required for induced thermotolerance in depressed Saccharomyces cerevisiae.
    Gross C; Watson K
    Biochem Biophys Res Commun; 1996 Mar; 220(3):766-72. PubMed ID: 8607839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of biosynthesis of Saccharomyces cerevisiae sugar transport system by tunicamycin.
    Lagunas R; DeJuan C; Benito B
    J Bacteriol; 1986 Dec; 168(3):1484-6. PubMed ID: 3536886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of the heat shock response of Saccharomyces cerevisiae.
    Miller MJ; Xuong NH; Geiduschek EP
    J Bacteriol; 1982 Jul; 151(1):311-27. PubMed ID: 7045079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae.
    Plesset J; Ludwig JR; Cox BS; McLaughlin CS
    J Bacteriol; 1987 Feb; 169(2):779-84. PubMed ID: 3542970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global Analysis of Secreted Proteins and Glycoproteins in Saccharomyces cerevisiae.
    Smeekens JM; Xiao H; Wu R
    J Proteome Res; 2017 Feb; 16(2):1039-1049. PubMed ID: 27933904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharomyces cerevisiae mating pheromones specifically inhibit the synthesis of proteins destined to be N-glycosylated.
    Orlean P; Schwaiger H; Appeltauer U; Haselbeck A; Tanner W
    Eur J Biochem; 1984 Apr; 140(1):183-9. PubMed ID: 6368231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of inhibitors of glycoprotein synthesis and processing on the phagocytosis of rod outer segments by cultured retinal pigment epithelial cells.
    Hall MO; Burgess BL; Arakawa H; Fliesler SJ
    Glycobiology; 1990 Sep; 1(1):51-61. PubMed ID: 2136381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein synthesis in germinating Saccharomyces cerevisiae ascospores.
    Armstrong RL; West TP; Magee PT
    Can J Microbiol; 1984 Mar; 30(3):345-52. PubMed ID: 6372976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of heat shock protein synthesis and protein glycosylation by stepdown heating.
    Henle KJ; Nagle WA
    Exp Cell Res; 1991 Oct; 196(2):184-91. PubMed ID: 1909966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translational thermotolerance in Saccharomyces cerevisiae.
    Hallberg EM; Hallberg RL
    Cell Stress Chaperones; 1996 Apr; 1(1):70-7. PubMed ID: 9222591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermotolerance is independent of induction of the full spectrum of heat shock proteins and of cell cycle blockage in the yeast Saccharomyces cerevisiae.
    Barnes CA; Johnston GC; Singer RA
    J Bacteriol; 1990 Aug; 172(8):4352-8. PubMed ID: 2198254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosylation of yeast microsomal proteins: preliminary characterization studies.
    Smith T; Corcoran MC; Atchia SM; Williams GA
    Biochem Soc Trans; 1993 Nov; 21(4):410S. PubMed ID: 8131984
    [No Abstract]   [Full Text] [Related]  

  • 19. Arsenic oxide-induced thermotolerance in Saccharomyces cerevisiae.
    Chang EC; Kosman DJ; Willsky GR
    J Bacteriol; 1989 Nov; 171(11):6349-52. PubMed ID: 2681165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cold shock response of yeast cells: induction of a 33 kDa protein and protection against freezing injury.
    Kaul SC; Obuchi K; Komatsu Y
    Cell Mol Biol (Noisy-le-grand); 1992; 38(5-6):553-9. PubMed ID: 1483108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.