These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 32886483)
1. Cation-Disorder-Assisted Reversible Topotactic Phase Transition between Antifluorite and Rocksalt Toward High-Capacity Lithium-Ion Batteries. Kobayashi H; Tsukasaki T; Ogasawara Y; Hibino M; Kudo T; Mizuno N; Honma I; Yamaguchi K ACS Appl Mater Interfaces; 2020 Sep; 12(39):43605-43613. PubMed ID: 32886483 [TBL] [Abstract][Full Text] [Related]
2. Corrections to "Cation-Disorder-Assisted Reversible Topotactic Phase Transition between Antifluorite and Rocksalt toward High-Capacity Lithium-Ion Batteries". Kobayashi H; Tsukasaki T; Ogasawara Y; Hibino M; Kudo T; Mizuno N; Honma I; Yamaguchi K ACS Appl Mater Interfaces; 2021 Apr; 13(16):19541. PubMed ID: 33861583 [No Abstract] [Full Text] [Related]
3. Role of Redox-Inactive Transition-Metals in the Behavior of Cation-Disordered Rocksalt Cathodes. Chen D; Wu J; Papp JK; McCloskey BD; Yang W; Chen G Small; 2020 Jun; 16(22):e2000656. PubMed ID: 32363748 [TBL] [Abstract][Full Text] [Related]
4. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Yabuuchi N; Takeuchi M; Nakayama M; Shiiba H; Ogawa M; Nakayama K; Ohta T; Endo D; Ozaki T; Inamasu T; Sato K; Komaba S Proc Natl Acad Sci U S A; 2015 Jun; 112(25):7650-5. PubMed ID: 26056288 [TBL] [Abstract][Full Text] [Related]
5. Cation-Disordered Lithium-Excess Li-Fe-Ti Oxide Cathode Materials for Enhanced Li-Ion Storage. Yang M; Jin J; Shen Y; Sun S; Zhao X; Shen X ACS Appl Mater Interfaces; 2019 Nov; 11(47):44144-44152. PubMed ID: 31687798 [TBL] [Abstract][Full Text] [Related]
6. Revealing Reaction Pathways of Collective Substituted Iron Fluoride Electrode for Lithium Ion Batteries. Hwang S; Ji X; Bak SM; Sun K; Bai J; Fan X; Gan H; Wang C; Su D ACS Nano; 2020 Aug; 14(8):10276-10283. PubMed ID: 32639719 [TBL] [Abstract][Full Text] [Related]
7. Reversible Mn Lee J; Kitchaev DA; Kwon DH; Lee CW; Papp JK; Liu YS; Lun Z; Clément RJ; Shi T; McCloskey BD; Guo J; Balasubramanian M; Ceder G Nature; 2018 Apr; 556(7700):185-190. PubMed ID: 29643482 [TBL] [Abstract][Full Text] [Related]
8. Lithium-Rich Rock Salt Type Sulfides-Selenides (Li Celasun Y; Colin JF; Martinet S; Benayad A; Peralta D Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591373 [TBL] [Abstract][Full Text] [Related]
9. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Lun Z; Ouyang B; Kwon DH; Ha Y; Foley EE; Huang TY; Cai Z; Kim H; Balasubramanian M; Sun Y; Huang J; Tian Y; Kim H; McCloskey BD; Yang W; Clément RJ; Ji H; Ceder G Nat Mater; 2021 Feb; 20(2):214-221. PubMed ID: 33046857 [TBL] [Abstract][Full Text] [Related]
10. Interplay between Cation and Anion Redox in Ni-Based Disordered Rocksalt Cathodes. Yue Y; Ha Y; Huang TY; Li N; Li L; Li Q; Feng J; Wang C; McCloskey BD; Yang W; Tong W ACS Nano; 2021 Aug; 15(8):13360-13369. PubMed ID: 34347434 [TBL] [Abstract][Full Text] [Related]
11. O2-Type Li Shang H; Zuo Y; Shen F; Song J; Ning F; Zhang K; He L; Xia D Nano Lett; 2020 Aug; 20(8):5779-5785. PubMed ID: 32643943 [TBL] [Abstract][Full Text] [Related]
12. Transition metal migration and O McColl K; House RA; Rees GJ; Squires AG; Coles SW; Bruce PG; Morgan BJ; Islam MS Nat Commun; 2022 Sep; 13(1):5275. PubMed ID: 36071065 [TBL] [Abstract][Full Text] [Related]
13. Polyhedral perspectives on the capacity limit of cathode compounds for lithium-ion batteries: a case study for Li Chen Z; Zhang Z; Li J Phys Chem Chem Phys; 2018 Aug; 20(31):20363-20370. PubMed ID: 29878019 [TBL] [Abstract][Full Text] [Related]
14. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Seo DH; Lee J; Urban A; Malik R; Kang S; Ceder G Nat Chem; 2016 Jul; 8(7):692-7. PubMed ID: 27325096 [TBL] [Abstract][Full Text] [Related]
15. Design and Tuning of the Electrochemical Properties of Vanadium-Based Cation-Disordered Rock-Salt Oxide Positive Electrode Material for Lithium-Ion Batteries. Cambaz MA; Vinayan BP; Euchner H; Pervez SA; Geßwein H; Braun T; Gross A; Fichtner M ACS Appl Mater Interfaces; 2019 Oct; 11(43):39848-39858. PubMed ID: 31589014 [TBL] [Abstract][Full Text] [Related]
16. A High Capacity, Good Safety and Low Cost Na Guan W; Pan B; Zhou P; Mi J; Zhang D; Xu J; Jiang Y ACS Appl Mater Interfaces; 2017 Jul; 9(27):22369-22377. PubMed ID: 28574241 [TBL] [Abstract][Full Text] [Related]
17. The Decay Mechanism Related to Structural and Morphological Evolution in Lithium-Rich Cathode Materials for Lithium-Ion Batteries. Liu Q; Zheng W; Lu Z; Zhang X; Wan K; Luo J; Fransaer J ChemSusChem; 2020 Jun; 13(12):3237-3242. PubMed ID: 32250058 [TBL] [Abstract][Full Text] [Related]
18. Redox Chemistry and the Role of Trapped Molecular O Sharpe R; House RA; Clarke MJ; Förstermann D; Marie JJ; Cibin G; Zhou KJ; Playford HY; Bruce PG; Islam MS J Am Chem Soc; 2020 Dec; 142(52):21799-21809. PubMed ID: 33321041 [TBL] [Abstract][Full Text] [Related]
19. Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithium-Rich Cathode Oxides. Zhao E; Li Q; Meng F; Liu J; Wang J; He L; Jiang Z; Zhang Q; Yu X; Gu L; Yang W; Li H; Wang F; Huang X Angew Chem Int Ed Engl; 2019 Mar; 58(13):4323-4327. PubMed ID: 30710397 [TBL] [Abstract][Full Text] [Related]
20. Molecular Orbital Principles of Oxygen-Redox Battery Electrodes. Okubo M; Yamada A ACS Appl Mater Interfaces; 2017 Oct; 9(42):36463-36472. PubMed ID: 29016101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]