These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32886513)

  • 1. Diabatization by Machine Intelligence.
    Shu Y; Truhlar DG
    J Chem Theory Comput; 2020 Oct; 16(10):6456-6464. PubMed ID: 32886513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permutationally Restrained Diabatization by Machine Intelligence.
    Shu Y; Varga Z; Sampaio de Oliveira-Filho AG; Truhlar DG
    J Chem Theory Comput; 2021 Feb; 17(2):1106-1116. PubMed ID: 33405927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diabatic States of Molecules.
    Shu Y; Varga Z; Kanchanakungwankul S; Zhang L; Truhlar DG
    J Phys Chem A; 2022 Feb; 126(7):992-1018. PubMed ID: 35138102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonintuitive Diabatic Potential Energy Surfaces for Thioanisole.
    Li SL; Xu X; Hoyer CE; Truhlar DG
    J Phys Chem Lett; 2015 Sep; 6(17):3352-9. PubMed ID: 26267410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct diabatization and analytic representation of coupled potential energy surfaces and couplings for the reactive quenching of the excited
    Shu Y; Kryven J; Sampaio de Oliveira-Filho AG; Zhang L; Song GL; Li SL; Meana-Pañeda R; Fu B; Bowman JM; Truhlar DG
    J Chem Phys; 2019 Sep; 151(10):104311. PubMed ID: 31521070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-Diabatization Based on Minimizing Derivative Couplings in a Limited Configuration Space: Elimination of Boundary Condition Dependence.
    Li Z; Zhang C; Shen Y; Wang L
    J Phys Chem Lett; 2024 Oct; 15(42):10544-10553. PubMed ID: 39401127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The requisite electronic structure theory to describe photoexcited nonadiabatic dynamics: nonadiabatic derivative couplings and diabatic electronic couplings.
    Subotnik JE; Alguire EC; Ou Q; Landry BR; Fatehi S
    Acc Chem Res; 2015 May; 48(5):1340-50. PubMed ID: 25932499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Block-diagonalization as a tool for the robust diabatization of high-dimensional potential energy surfaces.
    Venghaus F; Eisfeld W
    J Chem Phys; 2016 Mar; 144(11):114110. PubMed ID: 27004865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diabatic Molecular Orbitals, Potential Energies, and Potential Energy Surface Couplings by the 4-fold Way for Photodissociation of Phenol.
    Xu X; Yang KR; Truhlar DG
    J Chem Theory Comput; 2013 Aug; 9(8):3612-25. PubMed ID: 26584115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiclassical Multistate Dynamics for Six Coupled
    Akher FB; Shu Y; Varga Z; Truhlar DG
    J Chem Theory Comput; 2023 Jul; 19(14):4389-4401. PubMed ID: 37441750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A diabatic representation including both valence nonadiabatic interactions and spin-orbit effects for reaction dynamics.
    Valero R; Truhlar DG
    J Phys Chem A; 2007 Sep; 111(35):8536-51. PubMed ID: 17691756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Approach to Calculate Electronic Couplings between Quasi-diabatic Molecular Orbitals: The Case of DNA.
    Bai X; Guo X; Wang L
    J Phys Chem Lett; 2021 Oct; 12(42):10457-10464. PubMed ID: 34672582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-state diabatic potential energy surfaces of ClH
    Yin Z; Guan Y; Fu B; Zhang DH
    Phys Chem Chem Phys; 2019 Sep; 21(36):20372-20383. PubMed ID: 31498342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct diabatization based on nonadiabatic couplings: the N/D method.
    Varga Z; Parker KA; Truhlar DG
    Phys Chem Chem Phys; 2018 Nov; 20(41):26643-26659. PubMed ID: 30320314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-dimensional three-state potential energy surfaces and state couplings for photodissociation of thiophenol.
    Zhang L; Truhlar DG; Sun S
    J Chem Phys; 2019 Oct; 151(15):154306. PubMed ID: 31640376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-fidelity first principles nonadiabaticity: diabatization, analytic representation of global diabatic potential energy matrices, and quantum dynamics.
    Guan Y; Xie C; Yarkony DR; Guo H
    Phys Chem Chem Phys; 2021 Nov; 23(44):24962-24983. PubMed ID: 34473156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fitting of Coupled Potential Energy Surfaces via Discovery of Companion Matrices by Machine Intelligence.
    Shu Y; Varga Z; Parameswaran AM; Truhlar DG
    J Chem Theory Comput; 2024 Aug; ():. PubMed ID: 39106186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Diabatic Potential Energy Surfaces for the Photodissociation of Thiophenol.
    Lin GS; Xie C; Xie D
    J Phys Chem A; 2017 Nov; 121(44):8432-8439. PubMed ID: 29045150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic couplings for photo-induced processes from subsystem time-dependent density-functional theory: The role of the diabatization.
    Tölle J; Cupellini L; Mennucci B; Neugebauer J
    J Chem Phys; 2020 Nov; 153(18):184113. PubMed ID: 33187428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-dimensional ground- and excited-state potential energy surfaces and state couplings for photodissociation of thioanisole.
    Li SL; Truhlar DG
    J Chem Phys; 2017 Feb; 146(6):064301. PubMed ID: 28201879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.