These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 32886615)

  • 1. Automatic and Explainable Labeling of Medical Event Logs With Autoencoding.
    De Oliveira H; Augusto V; Jouaneton B; Lamarsalle L; Prodel M; Xie X
    IEEE J Biomed Health Inform; 2020 Nov; 24(11):3076-3084. PubMed ID: 32886615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On mining latent topics from healthcare chat logs.
    Wang T; Huang Z; Gan C
    J Biomed Inform; 2016 Jun; 61():247-59. PubMed ID: 27132766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adverse Event extraction from Structured Product Labels using the Event-based Text-mining of Health Electronic Records (ETHER) system.
    Pandey A; Kreimeyer K; Foster M; Dang O; Ly T; Wang W; Forshee R; Botsis T
    Health Informatics J; 2019 Dec; 25(4):1232-1243. PubMed ID: 29359620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A process mining-based investigation of adverse events in care processes.
    Caron F; Vanthienen J; Vanhaecht K; Van Limbergen E; Deweerdt J; Baesens B
    Health Inf Manag; 2014; 43(1):16-25. PubMed ID: 27010685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From IHE Audit Trails to XES Event Logs Facilitating Process Mining.
    Paster F; Helm E
    Stud Health Technol Inform; 2015; 210():40-4. PubMed ID: 25991098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Process Mining and Conformance Checking of Long Running Processes in the Context of Melanoma Surveillance.
    Rinner C; Helm E; Dunkl R; Kittler H; Rinderle-Ma S
    Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30544735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging semantic labels for multi-level abstraction in medical process mining and trace comparison.
    Leonardi G; Striani M; Quaglini S; Cavallini A; Montani S
    J Biomed Inform; 2018 Jul; 83():10-24. PubMed ID: 29793072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovering metric temporal constraint networks on temporal databases.
    Álvarez MR; Félix P; Cariñena P
    Artif Intell Med; 2013 Jul; 58(3):139-54. PubMed ID: 23660232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Unsupervised Detection of Process Models in Healthcare.
    Alharbi A; Bulpitt A; Johnson OA
    Stud Health Technol Inform; 2018; 247():381-385. PubMed ID: 29677987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Hospital Processes with Process Mining Techniques.
    Orellana García A; Pérez Alfonso D; Larrea Armenteros OU
    Stud Health Technol Inform; 2015; 216():310-4. PubMed ID: 26262061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Can Interactive Process Discovery Address Data Quality Issues in Real Business Settings? Evidence from a Case Study in Healthcare.
    Benevento E; Aloini D; van der Aalst WMP
    J Biomed Inform; 2022 Jun; 130():104083. PubMed ID: 35504544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A framework for mining signatures from event sequences and its applications in healthcare data.
    Wang F; Lee N; Hu J; Sun J; Ebadollahi S; Laine AF
    IEEE Trans Pattern Anal Mach Intell; 2013 Feb; 35(2):272-85. PubMed ID: 22585098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised class labeling of diffuse lung diseases using frequent attribute patterns.
    Mabu S; Obayashi M; Kuremoto T; Hashimoto N; Hirano Y; Kido S
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):519-528. PubMed ID: 27576334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Process mining in healthcare - An updated perspective on the state of the art.
    De Roock E; Martin N
    J Biomed Inform; 2022 Mar; 127():103995. PubMed ID: 35077900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-step approach for mining patient treatment pathways in administrative healthcare databases.
    Najjar A; Reinharz D; Girouard C; Gagné C
    Artif Intell Med; 2018 May; 87():34-48. PubMed ID: 29631915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using process mining for automatic support of clinical pathways design.
    Fernandez-Llatas C; Valdivieso B; Traver V; Benedi JM
    Methods Mol Biol; 2015; 1246():79-88. PubMed ID: 25417080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustering at the Disposal of Industry 4.0: Automatic Extraction of Plant Behaviors.
    Molinié D; Madani K; Amarger V
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-level process mining methodology for exploring disease-specific care processes.
    Vathy-Fogarassy Á; Vassányi I; Kósa I
    J Biomed Inform; 2022 Jan; 125():103979. PubMed ID: 34954110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data mining application to healthcare fraud detection: a two-step unsupervised clustering method for outlier detection with administrative databases.
    Massi MC; Ieva F; Lettieri E
    BMC Med Inform Decis Mak; 2020 Jul; 20(1):160. PubMed ID: 32664923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequent Treatment Sequence Mining from Medical Databases.
    Tóth K; Kósa I; Vathy-Fogarassy Á
    Stud Health Technol Inform; 2017; 236():211-218. PubMed ID: 28508798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.