These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 32886797)

  • 1. Chronic cold exposure induces mitochondrial plasticity in deer mice native to high altitudes.
    Mahalingam S; Cheviron ZA; Storz JF; McClelland GB; Scott GR
    J Physiol; 2020 Dec; 598(23):5411-5426. PubMed ID: 32886797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity of non-shivering thermogenesis and brown adipose tissue in high-altitude deer mice.
    Coulson SZ; Robertson CE; Mahalingam S; McClelland GB
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 34060604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolved changes in the intracellular distribution and physiology of muscle mitochondria in high-altitude native deer mice.
    Mahalingam S; McClelland GB; Scott GR
    J Physiol; 2017 Jul; 595(14):4785-4801. PubMed ID: 28418073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolved changes in phenotype across skeletal muscles in deer mice native to high altitude.
    Garrett EJ; Prasad SK; Schweizer RM; McClelland GB; Scott GR
    Am J Physiol Regul Integr Comp Physiol; 2024 Apr; 326(4):R297-R310. PubMed ID: 38372126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated changes across the O
    Tate KB; Wearing OH; Ivy CM; Cheviron ZA; Storz JF; McClelland GB; Scott GR
    Proc Biol Sci; 2020 May; 287(1927):20192750. PubMed ID: 32429808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice.
    Lui MA; Mahalingam S; Patel P; Connaty AD; Ivy CM; Cheviron ZA; Storz JF; McClelland GB; Scott GR
    Am J Physiol Regul Integr Comp Physiol; 2015 May; 308(9):R779-91. PubMed ID: 25695288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of chronic hypoxia on diaphragm function in deer mice native to high altitude.
    Dawson NJ; Lyons SA; Henry DA; Scott GR
    Acta Physiol (Oxf); 2018 May; 223(1):e13030. PubMed ID: 29316265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive increases in respiratory capacity and O
    Dawson NJ; Scott GR
    FASEB J; 2022 Jul; 36(7):e22391. PubMed ID: 35661419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental delay in shivering limits thermogenic capacity in juvenile high-altitude deer mice (
    Robertson CE; McClelland GB
    J Exp Biol; 2019 Oct; 222(Pt 21):. PubMed ID: 31562187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Modifications of Muscle Phenotype in High-Altitude Deer Mice Are Associated with Evolved Changes in Gene Regulation.
    Scott GR; Elogio TS; Lui MA; Storz JF; Cheviron ZA
    Mol Biol Evol; 2015 Aug; 32(8):1962-76. PubMed ID: 25851956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of hypoxia at different life stages on locomotory muscle phenotype in deer mice native to high altitudes.
    Nikel KE; Shanishchara NK; Ivy CM; Dawson NJ; Scott GR
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Oct; 224():98-104. PubMed ID: 29175484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circulatory mechanisms underlying adaptive increases in thermogenic capacity in high-altitude deer mice.
    Tate KB; Ivy CM; Velotta JP; Storz JF; McClelland GB; Cheviron ZA; Scott GR
    J Exp Biol; 2017 Oct; 220(Pt 20):3616-3620. PubMed ID: 28839010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mitochondrial Basis for Adaptive Variation in Aerobic Performance in High-Altitude Deer Mice.
    Scott GR; Guo KH; Dawson NJ
    Integr Comp Biol; 2018 Sep; 58(3):506-518. PubMed ID: 29873740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice.
    Velotta JP; Jones J; Wolf CJ; Cheviron ZA
    Mol Ecol; 2016 Jun; 25(12):2870-86. PubMed ID: 27126783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermogenesis is supported by high rates of circulatory fatty acid and triglyceride delivery in highland deer mice.
    Lyons SA; McClelland GB
    J Exp Biol; 2022 Jun; 225(12):. PubMed ID: 35552735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of breathing and ventilatory acclimatization to hypoxia in deer mice native to high altitudes.
    Ivy CM; Scott GR
    Acta Physiol (Oxf); 2017 Dec; 221(4):266-282. PubMed ID: 28640969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highland deer mice support increased thermogenesis in response to chronic cold hypoxia by shifting uptake of circulating fatty acids from muscles to brown adipose tissue.
    Lyons SA; McClelland GB
    J Exp Biol; 2024 Apr; 227(7):. PubMed ID: 38506250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution and developmental plasticity of lung structure in high-altitude deer mice.
    West CM; Ivy CM; Husnudinov R; Scott GR
    J Comp Physiol B; 2021 Mar; 191(2):385-396. PubMed ID: 33533958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid oxidation during thermogenesis in high-altitude deer mice (
    Lyons SA; Tate KB; Welch KC; McClelland GB
    Am J Physiol Regul Integr Comp Physiol; 2021 May; 320(5):R735-R746. PubMed ID: 33729020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolved changes in breathing and CO
    Ivy CM; Scott GR
    Am J Physiol Regul Integr Comp Physiol; 2018 Nov; 315(5):R1027-R1037. PubMed ID: 30183337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.