These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 32886884)
1. Design, Evolution, and Characterization of a Xylose Biosensor in Tang RQ; Wagner JM; Alper HS; Zhao XQ; Bai FW ACS Synth Biol; 2020 Oct; 9(10):2714-2722. PubMed ID: 32886884 [TBL] [Abstract][Full Text] [Related]
2. Engineering Prokaryotic Transcriptional Activator XylR as a Xylose-Inducible Biosensor for Transcription Activation in Yeast. Wei W; Shang Y; Zhang P; Liu Y; You D; Yin B; Ye B ACS Synth Biol; 2020 May; 9(5):1022-1029. PubMed ID: 32268060 [TBL] [Abstract][Full Text] [Related]
3. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Sievert C; Nieves LM; Panyon LA; Loeffler T; Morris C; Cartwright RA; Wang X Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7349-7354. PubMed ID: 28655843 [TBL] [Abstract][Full Text] [Related]
4. Efficient anaerobic consumption of D-xylose by E. coli BL21(DE3) via xylR adaptive mutation. Heo JM; Kim HJ; Lee SJ BMC Microbiol; 2021 Dec; 21(1):332. PubMed ID: 34872501 [TBL] [Abstract][Full Text] [Related]
5. Bacterial XylRs and synthetic promoters function as genetically encoded xylose biosensors in Saccharomyces cerevisiae. Teo WS; Chang MW Biotechnol J; 2015 Feb; 10(2):315-22. PubMed ID: 24975936 [TBL] [Abstract][Full Text] [Related]
6. Macrolide Biosensor Optimization through Cellular Substrate Sequestration. Miller CA; Ho JM; Parks SE; Bennett MR ACS Synth Biol; 2021 Feb; 10(2):258-264. PubMed ID: 33555859 [TBL] [Abstract][Full Text] [Related]
7. Availability of the Molecular Switch XylR Controls Phenotypic Heterogeneity and Lag Duration during Escherichia coli Adaptation from Glucose to Xylose. Barthe M; Tchouanti J; Gomes PH; Bideaux C; Lestrade D; Graham C; Steyer JP; Meleard S; Harmand J; Gorret N; Cocaign-Bousquet M; Enjalbert B mBio; 2020 Dec; 11(6):. PubMed ID: 33443125 [TBL] [Abstract][Full Text] [Related]
8. Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. Song S; Park C J Bacteriol; 1997 Nov; 179(22):7025-32. PubMed ID: 9371449 [TBL] [Abstract][Full Text] [Related]
9. The XylR variant (R121C and P363S) releases arabinose-induced catabolite repression on xylose fermentation and enhances coutilization of lignocellulosic sugar mixtures. Martinez R; Flores AD; Dufault ME; Wang X Biotechnol Bioeng; 2019 Dec; 116(12):3476-3481. PubMed ID: 31429933 [TBL] [Abstract][Full Text] [Related]
10. Validating a Xylose Regulator to Increase Polyhydroxybutyrate Production for Utilizing Mixed Sugars from Lignocellulosic Biomass Using Oh SJ; Lee HJ; Hwang JH; Kim HJ; Shin N; Lee SH; Seo SO; Bhatia SK; Yang YH J Microbiol Biotechnol; 2024 Mar; 34(3):700-709. PubMed ID: 37919866 [TBL] [Abstract][Full Text] [Related]
11. Engineering tunable biosensors for monitoring putrescine in Escherichia coli. Chen XF; Xia XX; Lee SY; Qian ZG Biotechnol Bioeng; 2018 Apr; 115(4):1014-1027. PubMed ID: 29251347 [TBL] [Abstract][Full Text] [Related]
12. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. Kim MN; Park HH; Lim WK; Shin HJ J Microbiol Methods; 2005 Feb; 60(2):235-45. PubMed ID: 15590098 [TBL] [Abstract][Full Text] [Related]
13. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors. Mannan AA; Liu D; Zhang F; Oyarzún DA ACS Synth Biol; 2017 Oct; 6(10):1851-1859. PubMed ID: 28763198 [TBL] [Abstract][Full Text] [Related]
14. Supplementation of intracellular XylR leads to coutilization of hemicellulose sugars. Groff D; Benke PI; Batth TS; Bokinsky G; Petzold CJ; Adams PD; Keasling JD Appl Environ Microbiol; 2012 Apr; 78(7):2221-9. PubMed ID: 22286982 [TBL] [Abstract][Full Text] [Related]
15. The Growth Dependent Design Constraints of Transcription-Factor-Based Metabolite Biosensors. Hartline CJ; Zhang F ACS Synth Biol; 2022 Jul; 11(7):2247-2258. PubMed ID: 35700119 [TBL] [Abstract][Full Text] [Related]
16. Structures of the Escherichia coli transcription activator and regulator of diauxie, XylR: an AraC DNA-binding family member with a LacI/GalR ligand-binding domain. Ni L; Tonthat NK; Chinnam N; Schumacher MA Nucleic Acids Res; 2013 Feb; 41(3):1998-2008. PubMed ID: 23241389 [TBL] [Abstract][Full Text] [Related]
17. Transcription-Factor-based Biosensor Engineering for Applications in Synthetic Biology. Ding N; Zhou S; Deng Y ACS Synth Biol; 2021 May; 10(5):911-922. PubMed ID: 33899477 [TBL] [Abstract][Full Text] [Related]
18. Engineering whole-cell biosensors with no antibiotic markers for monitoring aromatic compounds in the environment. de Las Heras A; de Lorenzo V Methods Mol Biol; 2012; 834():261-81. PubMed ID: 22144365 [TBL] [Abstract][Full Text] [Related]
19. Rationally rewiring the connectivity of the XylR/Pu regulatory node of the m-xylene degradation pathway in Pseudomonas putida. de Las Heras A; Martínez-García E; Domingo-Sananes MR; Fraile S; de Lorenzo V Integr Biol (Camb); 2016 Apr; 8(4):571-6. PubMed ID: 26961967 [TBL] [Abstract][Full Text] [Related]
20. Synthetic biosensor accelerates evolution by rewiring carbon metabolism toward a specific metabolite. Seok JY; Han YH; Yang JS; Yang J; Lim HG; Kim SG; Seo SW; Jung GY Cell Rep; 2021 Aug; 36(8):109589. PubMed ID: 34433019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]