BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32887032)

  • 1. Silver nanoclusters and carbon dots based light-addressable sensors for multichannel detections of dopamine and glutathione and its applications in probing of parkinson's diseases.
    Ma S; Yang Q; Zhang W; Xiao G; Wang M; Cheng L; Zhou X; Zhao M; Ji J; Zhang J; Yue Z
    Talanta; 2020 Nov; 219():121290. PubMed ID: 32887032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon dots based photoelectrochemical sensors for ultrasensitive detection of glutathione and its applications in probing of myocardial infarction.
    Li Z; Zhang J; Li Y; Zhao S; Zhang P; Zhang Y; Bi J; Liu G; Yue Z
    Biosens Bioelectron; 2018 Jan; 99():251-258. PubMed ID: 28772228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive photoelectrochemical microcystin-LR immunosensor using carboxyl-functionalized graphene oxide enhanced gold nanoclusters for signal amplification.
    Fan L; Xiao G; Wang M; Zhao S; Yang Q; Cheng L; Huang JJ; Yue Z
    Anal Chim Acta; 2021 Nov; 1185():339078. PubMed ID: 34711309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic electron transfer effect-based signal amplification strategy for the ultrasensitive detection of dopamine.
    Lu Q; Chen X; Liu D; Wu C; Liu M; Li H; Zhang Y; Yao S
    Talanta; 2018 May; 182():428-432. PubMed ID: 29501174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite.
    Ahmadi N; Bagherzadeh M; Nemati A
    Biosens Bioelectron; 2020 Mar; 151():111977. PubMed ID: 31999583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Codoping g-C
    Zheng L; Zhang H; Won M; Kim E; Li M; Kim JS
    Biosens Bioelectron; 2023 Mar; 224():115050. PubMed ID: 36603286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson's Disease Diagnostics.
    Kujawska M; Bhardwaj SK; Mishra YK; Kaushik A
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced LSPR performance of graphene nanoribbons-silver nanoparticles hybrid as a colorimetric sensor for sequential detection of dopamine and glutathione.
    Rostami S; Mehdinia A; Niroumand R; Jabbari A
    Anal Chim Acta; 2020 Jul; 1120():11-23. PubMed ID: 32475387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy.
    Zhao Y; Tan L; Gao X; Jie G; Huang T
    Biosens Bioelectron; 2018 Jul; 110():239-245. PubMed ID: 29627645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Peroxide and Dopamine Sensors Based on Electrodeposition of Reduced Graphene Oxide/Silver Nanoparticles.
    Zhang Y; Li N; Liu B; Zhang H
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced electrochemiluminescence of gold nanoclusters via silver doping and their application for ultrasensitive detection of dopamine.
    Tang Y; Xu J; Xiong C; Xiao Y; Zhang X; Wang S
    Analyst; 2019 Apr; 144(8):2643-2648. PubMed ID: 30839993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microelectrode Arrays Modified with Nanocomposites for Monitoring Dopamine and Spike Firings under Deep Brain Stimulation in Rat Models of Parkinson's Disease.
    Xiao G; Song Y; Zhang Y; Xing Y; Zhao H; Xie J; Xu S; Gao F; Wang M; Xing G; Cai X
    ACS Sens; 2019 Aug; 4(8):1992-2000. PubMed ID: 31272150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver nanocube coupling with a nanoporous silver film for dual-molecule recognition based ultrasensitive SERS detection of dopamine.
    Lu D; Fan M; Cai R; Huang Z; You R; Huang L; Feng S; Lu Y
    Analyst; 2020 Apr; 145(8):3009-3016. PubMed ID: 32129782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon-based nanocomposites with aptamer-templated silver nanoclusters for the highly sensitive and selective detection of platelet-derived growth factor.
    Zhang Z; Guo C; Zhang S; He L; Wang M; Peng D; Tian J; Fang S
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):735-742. PubMed ID: 27865109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-Stabilized Silver Nanoclusters as Specific, Ratiometric Fluorescent Dopamine Sensors.
    Del Bonis-O'Donnell JT; Thakrar A; Hirschberg JW; Vong D; Queenan BN; Fygenson DK; Pennathur S
    ACS Chem Neurosci; 2018 Apr; 9(4):849-857. PubMed ID: 29254331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonochemical synthesis of silver nanoparticles anchored reduced graphene oxide nanosheets for selective and sensitive detection of glutathione.
    Vinoth V; Wu JJ; Asiri AM; Anandan S
    Ultrason Sonochem; 2017 Nov; 39():363-373. PubMed ID: 28732957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using silver nanocluster/graphene nanocomposite to enhance photoelectrochemical activity of CdS:Mn/TiO2 for highly sensitive signal-on immunoassay.
    Song J; Wang J; Wang X; Zhao W; Zhao Y; Wu S; Gao Z; Yuan J; Meng C
    Biosens Bioelectron; 2016 Jun; 80():614-620. PubMed ID: 26901458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis of AgNPs@SNCDs nanocomposites as a fluorescent 'turn on' sensor for detection of glutathione.
    Zhang Z; Pei K; Yan Z; Chen J
    Luminescence; 2021 Feb; 36(1):215-221. PubMed ID: 32830909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence detections of hydrogen peroxide and glucose with polyethyleneimine-capped silver nanoclusters.
    Zhou T; Su Z; Wang X; Luo M; Tu Y; Yan J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 244():118881. PubMed ID: 32919157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs.
    Liu X; Wang F; Aizen R; Yehezkeli O; Willner I
    J Am Chem Soc; 2013 Aug; 135(32):11832-9. PubMed ID: 23841845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.