These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 32887096)
21. SERS-active Au@Ag core-shell nanorod (Au@AgNR) tags for ultrasensitive bacteria detection and antibiotic-susceptibility testing. Bi L; Wang X; Cao X; Liu L; Bai C; Zheng Q; Choo J; Chen L Talanta; 2020 Dec; 220():121397. PubMed ID: 32928416 [TBL] [Abstract][Full Text] [Related]
22. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis. Kamińska A; Szymborski T; Jaroch T; Zmysłowski A; Szterk A Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():208-217. PubMed ID: 29519430 [TBL] [Abstract][Full Text] [Related]
23. Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration. Khalil I; Yehye WA; Muhd Julkapli N; Sina AA; Rahmati S; Basirun WJ; Seyfoddin A Analyst; 2020 Feb; 145(4):1414-1426. PubMed ID: 31845928 [TBL] [Abstract][Full Text] [Related]
24. Synthesis of Uniform Gold Nanorods with Large Width to Realize Ultralow SERS Detection. He H; Wu C; Bi C; Song Y; Wang D; Xia H Chemistry; 2021 May; 27(27):7549-7560. PubMed ID: 33769618 [TBL] [Abstract][Full Text] [Related]
25. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection. Mao M; Zhou B; Tang X; Chen C; Ge M; Li P; Huang X; Yang L; Liu J Chemistry; 2018 Mar; 24(16):4094-4102. PubMed ID: 29327504 [TBL] [Abstract][Full Text] [Related]
26. DNA induced CTAB-caped gold bipyramidal nanoparticles self-assembly using for Raman detection of DNA molecules. Zhang Y; Lyu X; Chen D; Wu J; Li D; Li Y Talanta; 2024 Jan; 266(Pt 1):124936. PubMed ID: 37478765 [TBL] [Abstract][Full Text] [Related]
27. Assembling PVP-Au NPs as portable chip for sensitive detection of cyanide with surface-enhanced Raman spectroscopy. Li P; Li P; Tan X; Wang J; Zhang Y; Han H; Yang L Anal Bioanal Chem; 2020 May; 412(12):2863-2871. PubMed ID: 32112131 [TBL] [Abstract][Full Text] [Related]
28. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833 [TBL] [Abstract][Full Text] [Related]
30. Gold Nanobones Enhanced Ultrasensitive Surface-Enhanced Raman Scattering Aptasensor for Detecting Zhou S; Lu C; Li Y; Xue L; Zhao C; Tian G; Bao Y; Tang L; Lin J; Zheng J ACS Sens; 2020 Feb; 5(2):588-596. PubMed ID: 32037808 [TBL] [Abstract][Full Text] [Related]
31. Label-free nanobiosensor to detect infectious bacterica based on SERS. Chae EJ; Lee JH; Oh BK; Choi JW J Biomed Nanotechnol; 2013 Apr; 9(4):659-63. PubMed ID: 23621026 [TBL] [Abstract][Full Text] [Related]
32. Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood. Safir F; Vu N; Tadesse LF; Firouzi K; Banaei N; Jeffrey SS; Saleh AAE; Khuri-Yakub BPT; Dionne JA Nano Lett; 2023 Mar; 23(6):2065-2073. PubMed ID: 36856600 [TBL] [Abstract][Full Text] [Related]
33. Integration of a nanostructured dielectrophoretic device and a surface-enhanced Raman probe for highly sensitive rapid bacteria detection. Madiyar FR; Bhana S; Swisher LZ; Culbertson CT; Huang X; Li J Nanoscale; 2015 Feb; 7(8):3726-36. PubMed ID: 25641315 [TBL] [Abstract][Full Text] [Related]
34. Surface-Enhanced Raman Spectroscopy of Organic Molecules and Living Cells with Gold-Plated Black Silicon. Golubewa L; Karpicz R; Matulaitiene I; Selskis A; Rutkauskas D; Pushkarchuk A; Khlopina T; Michels D; Lyakhov D; Kulahava T; Shah A; Svirko Y; Kuzhir P ACS Appl Mater Interfaces; 2020 Nov; 12(45):50971-50984. PubMed ID: 33107725 [TBL] [Abstract][Full Text] [Related]
35. Preparation of Au@Ag core-shell nanoparticle decorated silicon nanowires for bacterial capture and sensing combined with laser induced breakdown spectroscopy and surface-enhanced Raman spectroscopy. Liao W; Lin Q; Xu Y; Yang E; Duan Y Nanoscale; 2019 Mar; 11(12):5346-5354. PubMed ID: 30848272 [TBL] [Abstract][Full Text] [Related]
36. The coupling of immunomagnetic enrichment of bacteria with paper-based platform. Ilhan H; Guven B; Dogan U; Torul H; Evran S; Çetin D; Suludere Z; Saglam N; Boyaci İH; Tamer U Talanta; 2019 Aug; 201():245-252. PubMed ID: 31122419 [TBL] [Abstract][Full Text] [Related]
37. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells. Adarsh N; Ramya AN; Maiti KK; Ramaiah D Chemistry; 2017 Oct; 23(57):14286-14291. PubMed ID: 28796314 [TBL] [Abstract][Full Text] [Related]
38. Ag Nanoparticles Decorated Cactus-Like Ag Dendrites/Si Nanoneedles as Highly Efficient 3D Surface-Enhanced Raman Scattering Substrates toward Sensitive Sensing. Huang J; Ma D; Chen F; Bai M; Xu K; Zhao Y Anal Chem; 2015 Oct; 87(20):10527-34. PubMed ID: 26406111 [TBL] [Abstract][Full Text] [Related]
39. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Wang C; Wu X; Dong P; Chen J; Xiao R Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319 [TBL] [Abstract][Full Text] [Related]
40. Gold Nanoparticle-Coated Starch Magnetic Beads for the Separation, Concentration, and SERS-Based Detection of You SM; Luo K; Jung JY; Jeong KB; Lee ES; Oh MH; Kim YR ACS Appl Mater Interfaces; 2020 Apr; 12(16):18292-18300. PubMed ID: 32242418 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]