These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32887309)

  • 1. Load Position and Weight Classification during Carrying Gait Using Wearable Inertial and Electromyographic Sensors.
    Goršič M; Dai B; Novak D
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing Human Box-Lifting Behavior Using Wearable Inertial Motion Sensors.
    Hlucny SD; Novak D
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring Effects of Two-Handed Side and Anterior Load Carriage on Thoracic-Pelvic Coordination Using Wearable Gyroscopes.
    Lim S; D'Souza C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical prediction of load carriage mode and magnitude from inertial sensor derived gait kinematics.
    Lim S; D'Souza C
    Appl Ergon; 2019 Apr; 76():1-11. PubMed ID: 30642513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of human gait activities using wearable sensors.
    Halim A; Abdellatif A; Awad MI; Atia MRA
    Proc Inst Mech Eng H; 2021 Jun; 235(6):676-687. PubMed ID: 33730894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson's Populations.
    Celik Y; Stuart S; Woo WL; Godfrey A
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Open Data Set of Inertial, Magnetic, Foot-Ground Contact, and Electromyographic Signals From Wearable Sensors During Walking.
    Camara Miraldo D; Naville Watanabe R; Duarte M
    Motor Control; 2020 Aug; 24(4):558-570. PubMed ID: 32810842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method of classification decision based on multi-BiLSTMs for physical loads hierarchy.
    Wang Y; Zhang C; Zhao Y; Liao Y; Gao Y; Zheng J
    Comput Methods Biomech Biomed Engin; 2023 Sep; 26(10):1101-1113. PubMed ID: 35920611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable-Sensor-based Detection and Prediction of Freezing of Gait in Parkinson's Disease: A Review.
    Pardoel S; Kofman J; Nantel J; Lemaire ED
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of shoe-worn Gait Up Physilog®5 wearable inertial sensors in adolescents.
    Carroll K; Kennedy RA; Koutoulas V; Bui M; Kraan CM
    Gait Posture; 2022 Jan; 91():19-25. PubMed ID: 34628218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ablation Analysis to Select Wearable Sensors for Classifying Standing, Walking, and Running.
    Gonzalez S; Stegall P; Edwards H; Stirling L; Siu HC
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning based Human Gait Segmentation with Wearable Sensor Platform.
    Potluri S; Chandran AB; Diedrich C; Schega L
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():588-594. PubMed ID: 31945967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WEARABLE SENSOR-BASED GAIT CLASSIFICATION IN IDIOPATHIC TOE WALKING ADOLESCENTS.
    Kim S; Soangra R; Grant-Beuttler M; Aminian A
    Biomed Sci Instrum; 2019 Apr; 55(2):178-185. PubMed ID: 32214530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons.
    Su B; Liu YX; Gutierrez-Farewik EM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable Sensor-Based Step Length Estimation During Overground Locomotion Using a Deep Convolutional Neural Network.
    Jin H; Kang I; Choi G; Molinaro DD; Young AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4897-4900. PubMed ID: 34892306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of wearable chair on gait, balance, and discomfort of new users during level walking with anterior loads.
    Li YY; Gan J
    J Safety Res; 2023 Dec; 87():27-37. PubMed ID: 38081701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of gait events and kinetic waveforms with wearable sensors and machine learning when running in an unconstrained environment.
    Donahue SR; Hahn ME
    Sci Rep; 2023 Feb; 13(1):2339. PubMed ID: 36759681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring freezing of gait during daily-life: an open-source, wearable sensors approach.
    Mancini M; Shah VV; Stuart S; Curtze C; Horak FB; Safarpour D; Nutt JG
    J Neuroeng Rehabil; 2021 Jan; 18(1):1. PubMed ID: 33397401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.