BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32887326)

  • 1. Continuous Estimation of Knee Joint Angle Based on Surface Electromyography Using a Long Short-Term Memory Neural Network and Time-Advanced Feature.
    Ma X; Liu Y; Song Q; Wang C
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach.
    Song Q; Ma X; Liu Y
    Comput Biol Med; 2023 Sep; 163():107124. PubMed ID: 37315381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of nonnormalized surface EMG and feature inputs for LSTM-based powered ankle prosthesis control algorithm development.
    Keleş AD; Türksoy RT; Yucesoy CA
    Front Neurosci; 2023; 17():1158280. PubMed ID: 37465585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Lower Limb Kinematics during Squat Task in Different Loading Using sEMG Activity and Deep Recurrent Neural Networks.
    Zangene AR; Abbasi A; Nazarpour K
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long short-term memory (LSTM) recurrent neural network for muscle activity detection.
    Ghislieri M; Cerone GL; Knaflitz M; Agostini V
    J Neuroeng Rehabil; 2021 Oct; 18(1):153. PubMed ID: 34674720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Joint Angles Based on Human Lower Limb Surface Electromyography.
    Zhao H; Qiu Z; Peng D; Wang F; Wang Z; Qiu S; Shi X; Chu Q
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EMG-Based Estimation of Lower Limb Joint Angles and Moments Using Long Short-Term Memory Network.
    Truong MTN; Ali AEA; Owaki D; Hayashibe M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of knee joint movement using single-channel sEMG signals with a feature-guided convolutional neural network.
    Zhang S; Lu J; Huo W; Yu N; Han J
    Front Neurorobot; 2022; 16():978014. PubMed ID: 36386394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals.
    Sun N; Cao M; Chen Y; Chen Y; Wang J; Wang Q; Chen X; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2446-2455. PubMed ID: 35994557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Attention-based Bidirectional LSTM Model for Continuous Cross-Subject Estimation of Knee Joint Angle during Running from sEMG Signals.
    Zangene AR; Williams Samuel O; Abbasi A; Nazarpour K; McEwan AA; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long exposure convolutional memory network for accurate estimation of finger kinematics from surface electromyographic signals.
    Guo W; Ma C; Wang Z; Zhang H; Farina D; Jiang N; Lin C
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33326941
    [No Abstract]   [Full Text] [Related]  

  • 12. Feasibility Study of Advanced Neural Networks Applied to sEMG-Based Force Estimation.
    Xu L; Chen X; Cao S; Zhang X; Chen X
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30257489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. sEMG-Based End-to-End Continues Prediction of Human Knee Joint Angles Using the Tightly Coupled Convolutional Transformer Model.
    Liang T; Sun N; Wang Q; Bu J; Li L; Chen Y; Cao M; Ma J; Liu T
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5272-5280. PubMed ID: 37566511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a neural network based control algorithm for powered ankle prosthesis.
    Keleş AD; Yucesoy CA
    J Biomech; 2020 Dec; 113():110087. PubMed ID: 33157417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of Muscle Forces of Lower Limbs Based on CNN-LSTM Neural Network and Wearable Sensor System.
    Liu K; Liu Y; Ji S; Gao C; Fu J
    Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Knee Joint Angle from Surface EMG Using Multiple Kernels Relevance Vector Regression.
    Li HB; Guan XR; Li Z; Zou KF; He L
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recurrent Neural Network as Estimator for a Virtual sEMG Channel.
    Machado JC; Cene VH; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3620-3623. PubMed ID: 31946660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous Estimation of Human Joint Angles From sEMG Using a Multi-Feature Temporal Convolutional Attention-Based Network.
    Wang S; Tang H; Gao L; Tan Q
    IEEE J Biomed Health Inform; 2022 Nov; 26(11):5461-5472. PubMed ID: 35969552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Associations between lower-limb muscle activation and knee flexion in post-stroke individuals: A study on the stance-to-swing phases of gait.
    Wang W; Li K; Yue S; Yin C; Wei N
    PLoS One; 2017; 12(9):e0183865. PubMed ID: 28886079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Channel sEMG-Based Estimation of Knee Joint Angle Using a Decomposition Algorithm With a State-Space Model.
    Zhang S; Yu N; Guo Z; Huo W; Han J
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4703-4712. PubMed ID: 38015663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.