These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 32887343)
1. Fatigue Prediction of Aluminum Alloys Considering Critical Plane Orientation under Complex Stress States. Kurek M Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32887343 [TBL] [Abstract][Full Text] [Related]
2. Fatigue Life of Aluminum Alloys Based on Shear and Hydrostatic Strain. Łagoda T; Głowacka K; Kurek A Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138233 [TBL] [Abstract][Full Text] [Related]
3. Application of the S-N Curve Mean Stress Correction Model in Terms of Fatigue Life Estimation for Random Torsional Loading for Selected Aluminum Alloys. Böhm M; Kluger K; Pochwała S; Kupina M Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32635520 [TBL] [Abstract][Full Text] [Related]
5. Assessment of Validity of Selected Criteria of Fatigue Life Prediction. Kluger K; Pawliczek R Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31330994 [TBL] [Abstract][Full Text] [Related]
6. Application of Life-Dependent Material Parameters to Fatigue Life Prediction under Multiaxial and Non-Zero Mean Loading. Kluger K; Karolczuk A; Derda S Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32235605 [TBL] [Abstract][Full Text] [Related]
7. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants. Yu ZY; Zhu SP; Liu Q; Liu Y Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28792487 [TBL] [Abstract][Full Text] [Related]
8. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices. Runciman A; Xu D; Pelton AR; Ritchie RO Biomaterials; 2011 Aug; 32(22):4987-93. PubMed ID: 21531019 [TBL] [Abstract][Full Text] [Related]
9. Numerical-experimental procedure for predicting fatigue life in SAE AMS 7475-T7351 aluminum alloy considering the effect of stress ratio. Montezuma MFV; Deus EP; Rüchert COFT; Carvalho MC; Silva Filho MAE An Acad Bras Cienc; 2024; 96(suppl 1):e20231400. PubMed ID: 39258705 [TBL] [Abstract][Full Text] [Related]
10. A novel model for low-cycle multiaxial fatigue life prediction based on the critical plane-damage parameter. Liu J; Lv X; Wei Y; Pan X; Jin Y; Wang Y Sci Prog; 2020; 103(3):36850420936220. PubMed ID: 32757872 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Shear Bond Strength, Fatigue Limit and Fatigue Life in resin-bonded metal to enamel bonds. Padipatvuthikul P; Mair LH Dent Mater; 2008 May; 24(5):674-80. PubMed ID: 17761276 [TBL] [Abstract][Full Text] [Related]
12. A New Multiparameter Model for Multiaxial Fatigue Life Prediction of Rubber Materials. Tobajas R; Elduque D; Ibarz E; Javierre C; Gracia L Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32456238 [TBL] [Abstract][Full Text] [Related]
13. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades. Yu ZY; Zhu SP; Liu Q; Liu Y Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772873 [TBL] [Abstract][Full Text] [Related]
14. Torsional whole-life transformation ratchetting under pure-torsional and non-proportional multiaxial cyclic loadings of NiTi SMA at human-body temperature: Experimental observations and life-prediction model. Song D; Kang G; Yu C; Kan Q; Zhang C J Mech Behav Biomed Mater; 2019 Jun; 94():267-278. PubMed ID: 30933835 [TBL] [Abstract][Full Text] [Related]
15. Investigation of Changes in Fatigue Damage Caused by Mean Load under Block Loading Conditions. Pawliczek R; Lagoda T Materials (Basel); 2021 May; 14(11):. PubMed ID: 34067334 [TBL] [Abstract][Full Text] [Related]
16. Predicting in vivo clinical performance of anterior cruciate ligament fixation methods from in vitro analysis: industrial tests of fatigue life and tolerance limits are more useful than other cyclic loading parameters. Saweeres ES; Kuiper JH; Evans RO; Richardson JB; White SH Am J Sports Med; 2005 May; 33(5):666-73. PubMed ID: 15722271 [TBL] [Abstract][Full Text] [Related]
17. Effect of Loading Frequency Ratio on Multiaxial Asynchronous Fatigue Failure of 30CrMnSiA Steel. Liu T; Qi X; Shi X; Gao L; Zhang T; Zhang J Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300882 [TBL] [Abstract][Full Text] [Related]
18. Torsional Fatigue Life Prediction of 30CrMnSiNi2A Based on Meso-Inhomogeneous Deformation. Cen CX; Lu DM; Qin DW; Zhang KS Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33917852 [TBL] [Abstract][Full Text] [Related]
19. Creep-Fatigue Experiment and Life Prediction Study of Piston 2A80 Aluminum Alloy. Dong Y; Liu J; Liu Y; Li H; Zhang X; Hu X Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33805819 [TBL] [Abstract][Full Text] [Related]
20. Prediction of Cyclic Fatigue Life of Nickel-Titanium Rotary Files by Virtual Modeling and Finite Elements Analysis. Scattina A; Alovisi M; Paolino DS; Pasqualini D; Scotti N; Chiandussi G; Berutti E J Endod; 2015 Nov; 41(11):1867-70. PubMed ID: 26361644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]