These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32887346)

  • 1. In-Service Detection and Quantification of Railway Wheel Flat by the Reflective Optical Position Sensor.
    Gao R; He Q; Feng Q; Cui J
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Wayside Railway Wheel Flat Detection Techniques: A Review.
    Fu W; He Q; Feng Q; Li J; Zheng F; Zhang B
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Railway Wheel Flat Detection System Based on a Parallelogram Mechanism.
    Gao R; He Q; Feng Q
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31434249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wheel Out-of-Roundness Detection Using an Envelope Spectrum Analysis.
    Gonçalves V; Mosleh A; Vale C; Montenegro PA
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of an informative railway wheel defect signal from wheel-rail contact signals measured by multiple wayside sensors.
    Alemi A; Corman F; Pang Y; Lodewijks G
    Proc Inst Mech Eng F J Rail Rapid Transit; 2019 Jan; 233(1):49-62. PubMed ID: 30662172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wayside Detection of Wheel Minor Defects in High-Speed Trains by a Bayesian Blind Source Separation Method.
    Liu XZ; Xu C; Ni YQ
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an On-Board Measurement System for Railway Vehicle Wheel Flange Wear.
    Turabimana P; Nkundineza C
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High-Precision Method for Dynamically Measuring Train Wheel Diameter Using Three Laser Displacement Transducers.
    Zheng F; Zhang B; Gao R; Feng Q
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31557813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Train Hunting Related Fast Degradation of a Railway Crossing-Condition Monitoring and Numerical Verification.
    Liu X; Markine VL
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Unsupervised Learning Approach for Wayside Train Wheel Flat Detection.
    Mohammadi M; Mosleh A; Vale C; Ribeiro D; Montenegro P; Meixedo A
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual Measurement System for Wheel-Rail Lateral Position Evaluation.
    Skrickij V; Šabanovič E; Shi D; Ricci S; Rizzetto L; Bureika G
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of wheel/rail contact conditions on the microstructure and hardness of railway wheels.
    Molyneux-Berry P; Davis C; Bevan A
    ScientificWorldJournal; 2014; 2014():209752. PubMed ID: 24526883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Validation of a Weigh-in-Motion Methodology for Railway Tracks.
    Pintão B; Mosleh A; Vale C; Montenegro P; Costa P
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application and Experimental Validation of a Multibody Model with Weakly Coupled Lateral and Vertical Dynamics to a Scaled Railway Vehicle.
    Urda P; Muñoz S; Aceituno JF; Escalona JL
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32630351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Source Coupling Based Analysis of the Acoustic Radiation Characteristics of the Wheel-Rail Region of High-Speed Railways.
    Hou B; Li J; Gao L; Wang D
    Entropy (Basel); 2021 Oct; 23(10):. PubMed ID: 34682052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applicability Evaluation of Surface and Sub-Surface Defects for Railway Wheel Material Using Induced Alternating Current Potential Drops.
    Kwon SJ; Seo JW; Kim MS; Ham YS
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Approach to Railway Track Faults Detection Using Acoustic Analysis.
    Shafique R; Siddiqui HU; Rustam F; Ullah S; Siddique MA; Lee E; Ashraf I; Dudley S
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling wheel/rail rolling noise for a high-speed train running along an infinitely long periodic slab track.
    Sheng X; Cheng G; Thompson D
    J Acoust Soc Am; 2020 Jul; 148(1):174. PubMed ID: 32752756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Wheel Polygonization Based on Wayside Monitoring and Artificial Intelligence.
    Guedes A; Silva R; Ribeiro D; Vale C; Mosleh A; Montenegro P; Meixedo A
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.
    Feng L; Lin G; Zhang W; Dai D
    PLoS One; 2015; 10(2):e0118249. PubMed ID: 25723492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.