These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32887426)

  • 21. Investigating the Potential of Commercial-Grade Carbon Black-Filled TPU for the 3D Printing of Compressive Sensors.
    Manganiello C; Naso D; Cupertino F; Fiume O; Percoco G
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30634586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Embedding objects during 3D printing to add new functionalities.
    Yuen PK
    Biomicrofluidics; 2016 Jul; 10(4):044104. PubMed ID: 27478528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and analysis of a novel loading technique for FDM 3D printed systems: Microwave-assisted impregnation of gastro-retentive PVA capsular devices.
    Saviano M; Bowles BJ; Penny MR; Ishaq A; Muwaffak Z; Falcone G; Russo P; Hilton ST
    Int J Pharm; 2022 Feb; 613():121386. PubMed ID: 34921952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Process Parameters for FFF 3D-Printed Conductors for Applications in Sensors.
    Barši Palmić T; Slavič J; Boltežar M
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Printed Flexible Strain Sensors: From Printing to Devices and Signals.
    Liu H; Zhang H; Han W; Lin H; Li R; Zhu J; Huang W
    Adv Mater; 2021 Feb; 33(8):e2004782. PubMed ID: 33448066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-Dimensional Printing of Abrasive, Hard, and Thermally Conductive Synthetic Microdiamond-Polymer Composite Using Low-Cost Fused Deposition Modeling Printer.
    Waheed S; Cabot JM; Smejkal P; Farajikhah S; Sayyar S; Innis PC; Beirne S; Barnsley G; Lewis TW; Breadmore MC; Paull B
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4353-4363. PubMed ID: 30623658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D printing for rapid prototyping of low-Z/density ionization chamber arrays.
    Brivio D; Naumann L; Albert S; Sajo E; Zygmanski P
    Med Phys; 2019 Dec; 46(12):5770-5779. PubMed ID: 31571224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strength of PLA Components Fabricated with Fused Deposition Technology Using a Desktop 3D Printer as a Function of Geometrical Parameters of the Process.
    Kuznetsov VE; Solonin AN; Urzhumtsev OD; Schilling R; Tavitov AG
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a Flexible Metamaterial Film with High EM Wave Absorptivity by Numerical and Experimental Methods.
    Cheng CH; Chen YS; Tsai HY; Liang YL; Lin DTW; Chen Y
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744191
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile Synthesis of 3D Printed Tailored Electrode for 3-Monochloropropane-1,2-Diol (3-MCPD) Sensing.
    Arris FA; Mohan D; Sajab MS
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Digital Light Processing 3D-Printed Ceramic Metamaterials for Electromagnetic Wave Absorption.
    Zhou R; Wang Y; Liu Z; Pang Y; Chen J; Kong J
    Nanomicro Lett; 2022 May; 14(1):122. PubMed ID: 35513756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D-printed λ/4 phase plate for broadband microwave applications.
    Wu Y; Grant PS; Isakov D
    Opt Express; 2018 Oct; 26(22):29068-29073. PubMed ID: 30470077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of FDM and DLP 3D-Printing Technologies to Prototype Electromagnetic Devices for RFID Applications.
    Colella R; Chietera FP; Catarinucci L
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33572922
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optically Transparent Metamaterial Absorber Using Inkjet Printing Technology.
    Jeong H; Tentzeris MM; Lim S
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31627488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of Metasurfaces on Building Construction Materials for Potential Electromagnetic Applications in the Microwave Band.
    Viskadourakis Z; Grammatikakis K; Katsara K; Drymiskianaki A; Kenanakis G
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fused Filament Fabrication of Small Ceramic Components.
    Nötzel D; Eickhoff R; Hanemann T
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30126149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D printed fiber optic faceplates by custom controlled fused deposition modeling.
    Wang Y; Gawedzinski J; Pawlowski ME; Tkaczyk TS
    Opt Express; 2018 Jun; 26(12):15362-15376. PubMed ID: 30114785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical investigations on microwave Fano resonances in 3D-printable hollow dielectric resonators.
    Lee E; Seo IC; Jeong HY; An SC; Jun YC
    Sci Rep; 2017 Nov; 7(1):16186. PubMed ID: 29170527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flexible frequency selective metamaterials for microwave applications.
    Gao B; Yuen MM; Ye TT
    Sci Rep; 2017 Mar; 7():45108. PubMed ID: 28322338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.