These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3288743)

  • 21. Accumulation of 14-methyl sterols and defective hyphal growth in Candida albicans.
    Shimokawa O; Kato Y; Nakayama H
    J Med Vet Mycol; 1986 Aug; 24(4):327-36. PubMed ID: 3528448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipid raft polarization contributes to hyphal growth in Candida albicans.
    Martin SW; Konopka JB
    Eukaryot Cell; 2004 Jun; 3(3):675-84. PubMed ID: 15189988
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and chemical characterization of plasma membranes from the yeast and mycelial forms of Candida albicans.
    Marriott MS
    J Gen Microbiol; 1975 Jan; 86(1):115-32. PubMed ID: 1089750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential inhibitory effects of protoberberines on sterol and chitin biosyntheses in Candida albicans.
    Park KS; Kang KC; Kim JH; Adams DJ; Johng TN; Paik YK
    J Antimicrob Chemother; 1999 May; 43(5):667-74. PubMed ID: 10382888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Squalene epoxidase encoded by ERG1 affects morphogenesis and drug susceptibilities of Candida albicans.
    Pasrija R; Krishnamurthy S; Prasad T; Ernst JF; Prasad R
    J Antimicrob Chemother; 2005 Jun; 55(6):905-13. PubMed ID: 15845783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Status of membrane lipids and amino acid transport in morphological mutants of Candida albicans.
    Koul A; Chandra J; Prasad R
    Biochem Mol Biol Int; 1995 May; 35(6):1215-22. PubMed ID: 7492959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid composition and polyene antibiotic sensitivity in isolates of Candida albicans.
    Singh M; Jayakumar A; Prasad R
    Microbios; 1979; 24(95):7-17. PubMed ID: 393957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sterol composition in field-grown and cultured mycelia of Inonotus obliquus.
    Zheng WF; Liu T; Xiang XY; Gu Q
    Yao Xue Xue Bao; 2007 Jul; 42(7):750-6. PubMed ID: 17882960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide expression profiling of the response to terbinafine in Candida albicans using a cDNA microarray analysis.
    Zeng YB; Qian YS; Ma L; Gu HN
    Chin Med J (Engl); 2007 May; 120(9):807-13. PubMed ID: 17531123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of ketoconazole on growth and sterol biosynthesis of Leishmania mexicana promastigotes in culture.
    Berman JD; Holz GG; Beach DH
    Mol Biochem Parasitol; 1984 May; 12(1):1-13. PubMed ID: 6087138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of allylamine antimycotic agents on fungal sterol biosynthesis measured by sterol side-chain methylation.
    Ryder NS
    J Gen Microbiol; 1985 Jul; 131(7):1595-602. PubMed ID: 3900280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of a subinhibitory dose of amphotericin B on cellular fatty acid and sterol composition of Candida albicans].
    Mpona-Minga M; Hakkou A; Coulon J; Bonaly R
    Ann Inst Pasteur Microbiol; 1988; 139(5):547-55. PubMed ID: 3075500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of fluconazole on the sterol and carbohydrate composition of four species of Candida.
    Pfaller M; Riley J
    Eur J Clin Microbiol Infect Dis; 1992 Feb; 11(2):152-6. PubMed ID: 1396728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Promotion of pseudomycelium formation of Candida albicans in culture: a morphological study of the effects of miconazole and ketoconazole.
    Borgers M; De Brabander M; Van Den Bossche H; Van Cutsem J
    Postgrad Med J; 1979 Sep; 55(647):687-91. PubMed ID: 392485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The activity of ketoconazole in mixed cultures of leukocytes and Candida albicans.
    de Brabander M; Aerts F; van Cutsem J; van den Bossche H; Borgers M
    Sabouraudia; 1980 Sep; 18(3):197-210. PubMed ID: 6254187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Antifungal activity of itraconazole and ketoconazole investigated in vitro, determined with minimal inhibitory concentrations and mycelial cell transformation in Candida albicans].
    Urbanowski S; Nierebińska E; Gwieździński Z
    Przegl Dermatol; 1989; 76(5-6):405-9. PubMed ID: 2561925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective inhibition of 14 alpha-desmethyl sterol synthesis in Candida albicans by terconazole, a new triazole antimycotic.
    Isaacson DM; Tolman EL; Tobia AJ; Rosenthale ME; McGuire JL; Vanden Bossche H; Janssen PA
    J Antimicrob Chemother; 1988 Mar; 21(3):333-43. PubMed ID: 3129389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Freeze fracture electron microscopical investigation of Candida albicans cells sensitive and resistant to nystatin.
    Pesti M; Novák EK; Ferenczy L; Svoboda A
    Sabouraudia; 1981 Mar; 19(1):17-26. PubMed ID: 7013113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mode of antifungal action of tolnaftate.
    Barrett-Bee KJ; Lane AC; Turner RW
    J Med Vet Mycol; 1986 Apr; 24(2):155-60. PubMed ID: 3522841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Terbinafine: mode of action and properties of the squalene epoxidase inhibition.
    Ryder NS
    Br J Dermatol; 1992 Feb; 126 Suppl 39():2-7. PubMed ID: 1543672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.