BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32887532)

  • 41. TMPRSS4 is a type II transmembrane serine protease involved in cancer and viral infections.
    Ohler A; Becker-Pauly C
    Biol Chem; 2012 Sep; 393(9):907-14. PubMed ID: 22944691
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MDCK cells that express proteases TMPRSS2 and HAT provide a cell system to propagate influenza viruses in the absence of trypsin and to study cleavage of HA and its inhibition.
    Böttcher E; Freuer C; Steinmetzer T; Klenk HD; Garten W
    Vaccine; 2009 Oct; 27(45):6324-9. PubMed ID: 19840668
    [TBL] [Abstract][Full Text] [Related]  

  • 43. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium.
    Bertram S; Dijkman R; Habjan M; Heurich A; Gierer S; Glowacka I; Welsch K; Winkler M; Schneider H; Hofmann-Winkler H; Thiel V; Pöhlmann S
    J Virol; 2013 Jun; 87(11):6150-60. PubMed ID: 23536651
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Roles and regulation of membrane-associated serine proteases.
    Qiu D; Owen K; Gray K; Bass R; Ellis V
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):583-7. PubMed ID: 17511657
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heterogeneous expression of the SARS-Coronavirus-2 receptor ACE2 in the human respiratory tract.
    Ortiz ME; Thurman A; Pezzulo AA; Leidinger MR; Klesney-Tait JA; Karp PH; Tan P; Wohlford-Lenane C; McCray PB; Meyerholz DK
    EBioMedicine; 2020 Oct; 60():102976. PubMed ID: 32971472
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Potent and specific inhibition of the biological activity of the type-II transmembrane serine protease matriptase by the cyclic microprotein MCoTI-II.
    Gray K; Elghadban S; Thongyoo P; Owen KA; Szabo R; Bugge TH; Tate EW; Leatherbarrow RJ; Ellis V
    Thromb Haemost; 2014 Aug; 112(2):402-11. PubMed ID: 24696092
    [TBL] [Abstract][Full Text] [Related]  

  • 47. TMPRSS2 Is the Major Activating Protease of Influenza A Virus in Primary Human Airway Cells and Influenza B Virus in Human Type II Pneumocytes.
    Limburg H; Harbig A; Bestle D; Stein DA; Moulton HM; Jaeger J; Janga H; Hardes K; Koepke J; Schulte L; Koczulla AR; Schmeck B; Klenk HD; Böttcher-Friebertshäuser E
    J Virol; 2019 Nov; 93(21):. PubMed ID: 31391268
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases.
    Earnest JT; Hantak MP; Li K; McCray PB; Perlman S; Gallagher T
    PLoS Pathog; 2017 Jul; 13(7):e1006546. PubMed ID: 28759649
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crosstalk between COVID-19 and prostate cancer.
    Bahmad HF; Abou-Kheir W
    Prostate Cancer Prostatic Dis; 2020 Dec; 23(4):561-563. PubMed ID: 32709978
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Probing the substrate specificities of matriptase, matriptase-2, hepsin and DESC1 with internally quenched fluorescent peptides.
    Béliveau F; Désilets A; Leduc R
    FEBS J; 2009 Apr; 276(8):2213-26. PubMed ID: 19302215
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ligand-Based Design of Selective Peptidomimetic uPA and TMPRSS2 Inhibitors with Arg Bioisosteres.
    Müller P; Zimmer C; Frey A; Holzmann G; Weldert AC; Schirmeister T
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338655
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs) using PICS with proteome-derived peptide libraries.
    Barré O; Dufour A; Eckhard U; Kappelhoff R; Béliveau F; Leduc R; Overall CM
    PLoS One; 2014; 9(9):e105984. PubMed ID: 25211023
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Serine Protease Inhibitors to Treat Lung Inflammatory Diseases.
    El Amri C
    Adv Exp Med Biol; 2021; 1304():215-226. PubMed ID: 34019272
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Type II Transmembrane Serine Proteases as Modulators in Adipose Tissue Phenotype and Function.
    Wu Q; Li S; Zhang X; Dong N
    Biomedicines; 2023 Jun; 11(7):. PubMed ID: 37509434
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Upamostat: a serine protease inhibitor for antiviral, gastrointestinal, and anticancer indications.
    Plasse TF; Fathi R; Fehrmann C; McComsey GA
    Expert Opin Investig Drugs; 2023; 32(12):1095-1103. PubMed ID: 37970658
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In Vitro Pharmacokinetic Behavior of Antiviral 3-Amidinophenylalanine Derivatives in Rat, Dog and Monkey Hepatocytes.
    Lányi K; Monostory K; Steinmetzer T; Jerzsele Á; Pászti-Gere E
    Biomedicines; 2023 Feb; 11(3):. PubMed ID: 36979660
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Harnessing the Potential of Enzymes as Inhaled Therapeutics in Respiratory Tract Diseases: A Review of the Literature.
    Vanderstocken G; Woolf NL; Trigiante G; Jackson J; McGoldrick R
    Biomedicines; 2022 Jun; 10(6):. PubMed ID: 35740461
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Novel Inhibitors and Activity-Based Probes Targeting Trypsin-Like Serine Proteases.
    Ferguson TEG; Reihill JA; Martin SL; Walker B
    Front Chem; 2022; 10():782608. PubMed ID: 35529696
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Yeast-Based Screening of Anti-Viral Molecules.
    Srivastava V; Kumar R; Ahmad A
    Microorganisms; 2024 Mar; 12(3):. PubMed ID: 38543629
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Suggestions in the Treatment of Diseases of the Respiratory Tract.
    Jenkins JFT
    Buffalo Med J; 1907 Jan; 62(6):345-348. PubMed ID: 36886739
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.