BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 32887540)

  • 21. Identification of gene co-expression modules and hub genes associated with lymph node metastasis of papillary thyroid cancer.
    Zhai T; Muhanhali D; Jia X; Wu Z; Cai Z; Ling Y
    Endocrine; 2019 Dec; 66(3):573-584. PubMed ID: 31332712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diallyl trisulphide, a H
    Zhang L; Xu S; Cheng X; Zheng J; Wang Y; Wu J; Wang X; Wu L; Yu H; Bao J
    Phytother Res; 2021 Jun; 35(6):3428-3443. PubMed ID: 33751676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. mRNA expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch.
    Hébrant A; Dom G; Dewaele M; Andry G; Trésallet C; Leteurtre E; Dumont JE; Maenhaut C
    PLoS One; 2012; 7(10):e37807. PubMed ID: 23115614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Role of Notch1 Signaling in Anaplastic Thyroid Carcinoma.
    Kim HJ; Kim MJ; Kim A; Jung CW; Park S; Koh JS; Myung JK
    Cancer Res Treat; 2017 Apr; 49(2):509-517. PubMed ID: 27586674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutational profiling of poorly differentiated and anaplastic thyroid carcinoma by the use of targeted next-generation sequencing.
    Duan H; Li Y; Hu P; Gao J; Ying J; Xu W; Zhao D; Wang Z; Ye J; Lizaso A; He Y; Wu H; Liang Z
    Histopathology; 2019 Dec; 75(6):890-899. PubMed ID: 31230400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in the expression pattern of apoptotic molecules (galectin-3, Bcl-2, Bax, survivin) during progression of thyroid malignancy and their clinical significance.
    Selemetjev SA; Savin SB; Paunovic IR; Tatic SB; Cvejic D
    Wien Klin Wochenschr; 2015 May; 127(9-10):337-44. PubMed ID: 25471003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying gene modules of thyroid cancer associated with pathological stage by weighted gene co-expression network analysis.
    Tang X; Huang X; Wang D; Yan R; Lu F; Cheng C; Li Y; Xu J
    Gene; 2019 Jul; 704():142-148. PubMed ID: 30965127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of cancer stem cell markers is more frequent in anaplastic thyroid carcinoma compared to papillary thyroid carcinoma and is related to adverse clinical outcome.
    Yun JY; Kim YA; Choe JY; Min H; Lee KS; Jung Y; Oh S; Kim JE
    J Clin Pathol; 2014 Feb; 67(2):125-33. PubMed ID: 23986551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A distinct tumor microenvironment makes anaplastic thyroid cancer more lethal but immunotherapy sensitive than papillary thyroid cancer.
    Han PZ; Ye WD; Yu PC; Tan LC; Shi X; Chen XF; He C; Hu JQ; Wei WJ; Lu ZW; Qu N; Wang Y; Ji QH; Ji DM; Wang YL
    JCI Insight; 2024 Mar; 9(8):. PubMed ID: 38478516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential expression of a set of microRNA genes reveals the potential mechanism of papillary thyroid carcinoma.
    Feng Z; Song Y; Qian J; Chen T; Yang C; Jia L; Liu C; Liu P; Lv J; Deng Z
    Ann Endocrinol (Paris); 2019 Apr; 80(2):77-83. PubMed ID: 30685058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TMEM158 May Serve as a Diagnostic Biomarker for Anaplastic Thyroid Carcinoma: An Integrated Bioinformatic Analysis.
    Li HN; Du YY; Xu T; Zhang R; Wang G; Lv ZT; Li XR
    Curr Med Sci; 2020 Dec; 40(6):1137-1147. PubMed ID: 33428142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioinformatics analysis of key genes and latent pathway interactions based on the anaplastic thyroid carcinoma gene expression profile.
    Huang Y; Tao Y; Li X; Chang S; Jiang B; Li F; Wang ZM
    Oncol Lett; 2017 Jan; 13(1):167-176. PubMed ID: 28428828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Histological features of BRAF V600E-mutant anaplastic thyroid carcinoma.
    Chen TY; Lorch JH; Wong KS; Barletta JA
    Histopathology; 2020 Aug; 77(2):314-320. PubMed ID: 32428249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression profile of biomarkers altered in papillary and anaplastic thyroid carcinoma: Contribution of Tunisian patients.
    Fourati A; El Amine O; Ben Ayoub W; Cherni I; Goucha A; El May MV; Gamoudi A; El May A
    Bull Cancer; 2017 May; 104(5):433-441. PubMed ID: 28185633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Knockdown of S100A4 blocks growth and metastasis of anaplastic thyroid cancer cells in vitro and in vivo.
    Zhang K; Yu M; Hao F; Dong A; Chen D
    Cancer Biomark; 2016 Sep; 17(3):281-291. PubMed ID: 27802204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioinformatic analysis of the prognostic value and potential regulatory network of FOXF1 in papillary thyroid cancer.
    Gu Y; Hu C
    Biofactors; 2019 Nov; 45(6):902-911. PubMed ID: 31498939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative study between poorly differentiated thyroid cancer and anaplastic thyroid cancer: real-world pathological distribution, death attribution, and prognostic factor estimation.
    Zhang K; Wang X; Wei T; Li Z; Zhu J; Chen YW
    Front Endocrinol (Lausanne); 2024; 15():1347362. PubMed ID: 38544687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Knockdown of HCP5 exerts tumor-suppressive functions by up-regulating tumor suppressor miR-128-3p in anaplastic thyroid cancer.
    Chen J; Zhao D; Meng Q
    Biomed Pharmacother; 2019 Aug; 116():108966. PubMed ID: 31102936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long Non-coding RNA Expression in Anaplastic Thyroid Carcinomas.
    Wang Y; Hardin H; Chu YH; Esbona K; Zhang R; Lloyd RV
    Endocr Pathol; 2019 Dec; 30(4):262-269. PubMed ID: 31468286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elucidation of the molecular mechanisms of anaplastic thyroid carcinoma by integrated miRNA and mRNA analysis.
    Liu G; Wu K; Sheng Y
    Oncol Rep; 2016 Nov; 36(5):3005-3013. PubMed ID: 27599582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.