BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 32887696)

  • 1. CRISPR-GEMM Pooled Mutagenic Screening Identifies KMT2D as a Major Modulator of Immune Checkpoint Blockade.
    Wang G; Chow RD; Zhu L; Bai Z; Ye L; Zhang F; Renauer PA; Dong MB; Dai X; Zhang X; Du Y; Cheng Y; Niu L; Chu Z; Kim K; Liao C; Clark P; Errami Y; Chen S
    Cancer Discov; 2020 Dec; 10(12):1912-1933. PubMed ID: 32887696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancer Reprogramming Confers Dependence on Glycolysis and IGF Signaling in KMT2D Mutant Melanoma.
    Maitituoheti M; Keung EZ; Tang M; Yan L; Alam H; Han G; Singh AK; Raman AT; Terranova C; Sarkar S; Orouji E; Amin SB; Sharma S; Williams M; Samant NS; Dhamdhere M; Zheng N; Shah T; Shah A; Axelrad JB; Anvar NE; Lin YH; Jiang S; Chang EQ; Ingram DR; Wang WL; Lazar A; Lee MG; Muller F; Wang L; Ying H; Rai K
    Cell Rep; 2020 Oct; 33(3):108293. PubMed ID: 33086062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target.
    Wang X; Tokheim C; Gu SS; Wang B; Tang Q; Li Y; Traugh N; Zeng Z; Zhang Y; Li Z; Zhang B; Fu J; Xiao T; Li W; Meyer CA; Chu J; Jiang P; Cejas P; Lim K; Long H; Brown M; Liu XS
    Cell; 2021 Oct; 184(21):5357-5374.e22. PubMed ID: 34582788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibroblast growth factor receptor 3 mutation attenuates response to immune checkpoint blockade in metastatic urothelial carcinoma by driving immunosuppressive microenvironment.
    Song Y; Peng Y; Qin C; Wang Y; Yang W; Du Y; Xu T
    J Immunother Cancer; 2023 Sep; 11(9):. PubMed ID: 37777251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer.
    Dubrot J; Du PP; Lane-Reticker SK; Kessler EA; Muscato AJ; Mehta A; Freeman SS; Allen PM; Olander KE; Ockerman KM; Wolfe CH; Wiesmann F; Knudsen NH; Tsao HW; Iracheta-Vellve A; Schneider EM; Rivera-Rosario AN; Kohnle IC; Pope HW; Ayer A; Mishra G; Zimmer MD; Kim SY; Mahapatra A; Ebrahimi-Nik H; Frederick DT; Boland GM; Haining WN; Root DE; Doench JG; Hacohen N; Yates KB; Manguso RT
    Nat Immunol; 2022 Oct; 23(10):1495-1506. PubMed ID: 36151395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic antitumor activity of pan-PI3K inhibition and immune checkpoint blockade in bladder cancer.
    Zhu S; Ma AH; Zhu Z; Adib E; Rao T; Li N; Ni K; Chittepu VCSR; Prabhala R; Garisto Risco J; Kwiatkowski D; Mouw K; Sonpavde G; Cheng F; Pan CX
    J Immunother Cancer; 2021 Nov; 9(11):. PubMed ID: 34725212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutically Increasing MHC-I Expression Potentiates Immune Checkpoint Blockade.
    Gu SS; Zhang W; Wang X; Jiang P; Traugh N; Li Z; Meyer C; Stewig B; Xie Y; Bu X; Manos MP; Font-Tello A; Gjini E; Lako A; Lim K; Conway J; Tewari AK; Zeng Z; Sahu AD; Tokheim C; Weirather JL; Fu J; Zhang Y; Kroger B; Liang JH; Cejas P; Freeman GJ; Rodig S; Long HW; Gewurz BE; Hodi FS; Brown M; Liu XS
    Cancer Discov; 2021 Jun; 11(6):1524-1541. PubMed ID: 33589424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CHEK2 deficiency increase the response to PD-1 inhibitors by affecting the tumor immune microenvironment.
    Xu P; Gao Y; Jiang S; Cui Y; Xie Y; Kang Z; Chen YX; Sun D; Fang JY
    Cancer Lett; 2024 Apr; 588():216595. PubMed ID: 38097135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-Inflammatory Drugs Remodel the Tumor Immune Environment to Enhance Immune Checkpoint Blockade Efficacy.
    Pelly VS; Moeini A; Roelofsen LM; Bonavita E; Bell CR; Hutton C; Blanco-Gomez A; Banyard A; Bromley CP; Flanagan E; Chiang SC; Jørgensen C; Schumacher TN; Thommen DS; Zelenay S
    Cancer Discov; 2021 Oct; 11(10):2602-2619. PubMed ID: 34031121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomarkers of Immune Checkpoint Blockade Response in Triple-Negative Breast Cancer.
    Isaacs J; Anders C; McArthur H; Force J
    Curr Treat Options Oncol; 2021 Mar; 22(5):38. PubMed ID: 33743085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KMT2D maintains neoplastic cell proliferation and global histone H3 lysine 4 monomethylation.
    Guo C; Chen LH; Huang Y; Chang CC; Wang P; Pirozzi CJ; Qin X; Bao X; Greer PK; McLendon RE; Yan H; Keir ST; Bigner DD; He Y
    Oncotarget; 2013 Nov; 4(11):2144-53. PubMed ID: 24240169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient activation of tumoral DNA damage tolerance pathway coupled with immune checkpoint blockade exerts durable tumor regression in mouse melanoma.
    Zhuo M; Gorgun FM; Tyler DS; Englander EW
    Pigment Cell Melanoma Res; 2021 May; 34(3):605-617. PubMed ID: 33124186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The histone methyltransferase KMT2D, mutated in Kabuki syndrome patients, is required for neural crest cell formation and migration.
    Schwenty-Lara J; Nehl D; Borchers A
    Hum Mol Genet; 2020 Jan; 29(2):305-319. PubMed ID: 31813957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in DNA damage response pathways as a potential biomarker for immune checkpoint blockade efficacy: evidence from a seven-cancer immunotherapy cohort.
    Zhang W; Zhang L; Jiang H; Li Y; Wang S; Wang Q
    Aging (Albany NY); 2021 Nov; 13(21):24136-24154. PubMed ID: 34747718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatic Mutations Increase Hepatic Clonal Fitness and Regeneration in Chronic Liver Disease.
    Zhu M; Lu T; Jia Y; Luo X; Gopal P; Li L; Odewole M; Renteria V; Singal AG; Jang Y; Ge K; Wang SC; Sorouri M; Parekh JR; MacConmara MP; Yopp AC; Wang T; Zhu H
    Cell; 2019 Apr; 177(3):608-621.e12. PubMed ID: 30955891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KMT2D Deficiency Impairs Super-Enhancers to Confer a Glycolytic Vulnerability in Lung Cancer.
    Alam H; Tang M; Maitituoheti M; Dhar SS; Kumar M; Han CY; Ambati CR; Amin SB; Gu B; Chen TY; Lin YH; Chen J; Muller FL; Putluri N; Flores ER; DeMayo FJ; Baseler L; Rai K; Lee MG
    Cancer Cell; 2020 Apr; 37(4):599-617.e7. PubMed ID: 32243837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating angiogenesis signature and tumor mutation burden for improved patient stratification in immune checkpoint blockade therapy for muscle-invasive bladder cancer.
    Shao F; Jin K; Li B; Liu Z; Zeng H; Wang Y; Zhu Y; Xu L; Xu J; Wang Z; Chang Y; Zhang W
    Urol Oncol; 2023 Oct; 41(10):433.e9-433.e18. PubMed ID: 37625906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved immuno-collagenic subtypes predict response to immune checkpoint blockade.
    Mei J; Cai Y; Xu R; Li Q; Chu J; Luo Z; Sun Y; Shi Y; Xu J; Li D; Liang S; Jiang Y; Liu J; Qian Z; Zhou J; Wan M; Yang Y; Zhu Y; Zhang Y; Yin Y
    Cancer Commun (Lond); 2024 May; 44(5):554-575. PubMed ID: 38507505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vectorized Treg-depleting αCTLA-4 elicits antigen cross-presentation and CD8
    Semmrich M; Marchand JB; Fend L; Rehn M; Remy C; Holmkvist P; Silvestre N; Svensson C; Kleinpeter P; Deforges J; Junghus F; Cleary KL; Bodén M; Mårtensson L; Foloppe J; Teige I; Quéméneur E; Frendéus B
    J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35058324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting immune checkpoints in hematological malignancies.
    Salik B; Smyth MJ; Nakamura K
    J Hematol Oncol; 2020 Aug; 13(1):111. PubMed ID: 32787882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.