BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32887797)

  • 1. Polydisperse molecular architecture of connexin 26/30 heteromeric hemichannels revealed by atomic force microscopy imaging.
    Naulin PA; Lozano B; Fuentes C; Liu Y; Schmidt C; Contreras JE; Barrera NP
    J Biol Chem; 2020 Dec; 295(49):16499-16509. PubMed ID: 32887797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cochlear connexin 30 homomeric and heteromeric channels exhibit distinct assembly mechanisms.
    Defourny J; Thelen N; Thiry M
    Mech Dev; 2019 Feb; 155():8-14. PubMed ID: 30296578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular domains of mouse connexin26 and -30 affect diffusional and electrical properties of gap junction channels.
    Manthey D; Banach K; Desplantez T; Lee CG; Kozak CA; Traub O; Weingart R; Willecke K
    J Membr Biol; 2001 May; 181(2):137-48. PubMed ID: 11420600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts.
    Sun J; Ahmad S; Chen S; Tang W; Zhang Y; Chen P; Lin X
    Am J Physiol Cell Physiol; 2005 Mar; 288(3):C613-23. PubMed ID: 15692151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human connexin26 and connexin30 form functional heteromeric and heterotypic channels.
    Yum SW; Zhang J; Valiunas V; Kanaporis G; Brink PR; White TW; Scherer SS
    Am J Physiol Cell Physiol; 2007 Sep; 293(3):C1032-48. PubMed ID: 17615163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism for modulation of gating of connexin26-containing channels by taurine.
    Locke D; Kieken F; Tao L; Sorgen PL; Harris AL
    J Gen Physiol; 2011 Sep; 138(3):321-39. PubMed ID: 21844220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy shows connexin26 hemichannel clustering in purified membrane fragments.
    Meckes B; Ambrosi C; Barnard H; Arce FT; Sosinsky GE; Lal R
    Biochemistry; 2014 Dec; 53(47):7407-14. PubMed ID: 25365227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heteromeric, but not homomeric, connexin channels are selectively permeable to inositol phosphates.
    Ayad WA; Locke D; Koreen IV; Harris AL
    J Biol Chem; 2006 Jun; 281(24):16727-39. PubMed ID: 16601118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30.
    Marziano NK; Casalotti SO; Portelli AE; Becker DL; Forge A
    Hum Mol Genet; 2003 Apr; 12(8):805-12. PubMed ID: 12668604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique expression of connexins in the human cochlea.
    Liu W; Boström M; Kinnefors A; Rask-Andersen H
    Hear Res; 2009 Apr; 250(1-2):55-62. PubMed ID: 19450429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeant-specific gating of connexin 30 hemichannels.
    Nielsen BS; Alstrom JS; Nicholson BJ; Nielsen MS; MacAulay N
    J Biol Chem; 2017 Dec; 292(49):19999-20009. PubMed ID: 28982982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inner ear contains heteromeric channels composed of cx26 and cx30 and deafness-related mutations in cx26 have a dominant negative effect on cx30.
    Forge A; Marziano NK; Casalotti SO; Becker DL; Jagger D
    Cell Commun Adhes; 2003; 10(4-6):341-6. PubMed ID: 14681039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent insights into gap junction biogenesis in the cochlea.
    Defourny J; Thiry M
    Dev Dyn; 2023 Feb; 252(2):239-246. PubMed ID: 36106826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered permeability and modulatory character of connexin channels during mammary gland development.
    Locke D; Stein T; Davies C; Morris J; Harris AL; Evans WH; Monaghan P; Gusterson B
    Exp Cell Res; 2004 Aug; 298(2):643-60. PubMed ID: 15265710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved glycine at position 45 of major cochlear connexins constitutes a vital component of the Ca²⁺ sensor for gating of gap junction hemichannels.
    Zhang Y; Hao H
    Biochem Biophys Res Commun; 2013 Jul; 436(3):424-9. PubMed ID: 23756814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Keratitis-ichthyosis-deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43.
    García IE; Maripillán J; Jara O; Ceriani R; Palacios-Muñoz A; Ramachandran J; Olivero P; Perez-Acle T; González C; Sáez JC; Contreras JE; Martínez AD
    J Invest Dermatol; 2015 May; 135(5):1338-1347. PubMed ID: 25625422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tricellular adherens junctions provide a cell surface delivery platform for connexin 26/30 oligomers in the cochlea.
    Defourny J; Thiry M
    Hear Res; 2021 Feb; 400():108137. PubMed ID: 33291008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deafness mechanism of digenic Cx26 (GJB2) and Cx30 (GJB6) mutations: Reduction of endocochlear potential by impairment of heterogeneous gap junctional function in the cochlear lateral wall.
    Mei L; Chen J; Zong L; Zhu Y; Liang C; Jones RO; Zhao HB
    Neurobiol Dis; 2017 Dec; 108():195-203. PubMed ID: 28823936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mechanism of gap junction docking revealed by functional rescue of a human-disease-linked connexin mutant.
    Gong XQ; Nakagawa S; Tsukihara T; Bai D
    J Cell Sci; 2013 Jul; 126(Pt 14):3113-20. PubMed ID: 23687377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.