These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Microfluidic bioprinting for organ-on-a-chip models. Yu F; Choudhury D Drug Discov Today; 2019 Jun; 24(6):1248-1257. PubMed ID: 30940562 [TBL] [Abstract][Full Text] [Related]
3. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677 [TBL] [Abstract][Full Text] [Related]
4. 3D Bioprinted Osteogenic Tissue Models for In Vitro Drug Screening. Breathwaite E; Weaver J; Odanga J; Dela Pena-Ponce M; Lee JB Molecules; 2020 Jul; 25(15):. PubMed ID: 32751124 [TBL] [Abstract][Full Text] [Related]
5. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue. Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798 [TBL] [Abstract][Full Text] [Related]
7. Pneumatic extrusion bioprinting-based high throughput fabrication of a melanoma 3D cell culture model for anti-cancer drug screening. de Villiers M; Kotzé AF; du Plessis LH Biomed Mater; 2024 Aug; 19(5):. PubMed ID: 39025118 [TBL] [Abstract][Full Text] [Related]
8. 3D bioprinting for organ and organoid models and disease modeling. Juraski AC; Sharma S; Sparanese S; da Silva VA; Wong J; Laksman Z; Flannigan R; Rohani L; Willerth SM Expert Opin Drug Discov; 2023; 18(9):1043-1059. PubMed ID: 37431937 [TBL] [Abstract][Full Text] [Related]
9. Developments with 3D bioprinting for novel drug discovery. Satpathy A; Datta P; Wu Y; Ayan B; Bayram E; Ozbolat IT Expert Opin Drug Discov; 2018 Dec; 13(12):1115-1129. PubMed ID: 30384781 [No Abstract] [Full Text] [Related]
10. Functional characterization of 3D contractile smooth muscle tissues generated using a unique microfluidic 3D bioprinting technology. Dickman CTD; Russo V; Thain K; Pan S; Beyer ST; Walus K; Getsios S; Mohamed T; Wadsworth SJ FASEB J; 2020 Jan; 34(1):1652-1664. PubMed ID: 31914670 [TBL] [Abstract][Full Text] [Related]
11. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Zhang YS; Arneri A; Bersini S; Shin SR; Zhu K; Goli-Malekabadi Z; Aleman J; Colosi C; Busignani F; Dell'Erba V; Bishop C; Shupe T; Demarchi D; Moretti M; Rasponi M; Dokmeci MR; Atala A; Khademhosseini A Biomaterials; 2016 Dec; 110():45-59. PubMed ID: 27710832 [TBL] [Abstract][Full Text] [Related]
12. Applications of 3D Bioprinting Technology to Brain Cells and Brain Tumor Models: Special Emphasis to Glioblastoma. Ozbek II; Saybasili H; Ulgen KO ACS Biomater Sci Eng; 2024 May; 10(5):2616-2635. PubMed ID: 38664996 [TBL] [Abstract][Full Text] [Related]
13. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing. Knowlton S; Yenilmez B; Tasoglu S Trends Biotechnol; 2016 Sep; 34(9):685-688. PubMed ID: 27424152 [TBL] [Abstract][Full Text] [Related]
14. Vascularization Strategies in 3D Cell Culture Models: From Scaffold-Free Models to 3D Bioprinting. Anthon SG; Valente KP Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498908 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional direct cell bioprinting for tissue engineering. Ozler SB; Bakirci E; Kucukgul C; Koc B J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2530-2544. PubMed ID: 27689939 [TBL] [Abstract][Full Text] [Related]
16. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Izadifar M; Chapman D; Babyn P; Chen X; Kelly ME Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528 [TBL] [Abstract][Full Text] [Related]
18. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling. Shukla P; Yeleswarapu S; Heinrich MA; Prakash J; Pati F Biofabrication; 2022 May; 14(3):. PubMed ID: 35512666 [TBL] [Abstract][Full Text] [Related]
19. 3D modeling of normal skin and cutaneous squamous cell carcinoma. A comparative study in 2D cultures, spheroids, and 3D bioprinted systems. Kurzyk A; Szumera-Ciećkiewicz A; Miłoszewska J; Chechlińska M Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38377605 [TBL] [Abstract][Full Text] [Related]
20. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]