BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32888346)

  • 1. Arc/Arg3.1 function in long-term synaptic plasticity: Emerging mechanisms and unresolved issues.
    Zhang H; Bramham CR
    Eur J Neurosci; 2021 Oct; 54(8):6696-6712. PubMed ID: 32888346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse synaptic tagging: An inactive synapse-specific mechanism to capture activity-induced Arc/arg3.1 and to locally regulate spatial distribution of synaptic weights.
    Okuno H; Minatohara K; Bito H
    Semin Cell Dev Biol; 2018 May; 77():43-50. PubMed ID: 28939038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of spine structural plasticity by Arc/Arg3.1.
    Newpher TM; Harris S; Pringle J; Hamilton C; Soderling S
    Semin Cell Dev Biol; 2018 May; 77():25-32. PubMed ID: 28943393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A specific requirement of Arc/Arg3.1 for visual experience-induced homeostatic synaptic plasticity in mouse primary visual cortex.
    Gao M; Sossa K; Song L; Errington L; Cummings L; Hwang H; Kuhl D; Worley P; Lee HK
    J Neurosci; 2010 May; 30(21):7168-78. PubMed ID: 20505084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The immediate early gene arc/arg3.1: regulation, mechanisms, and function.
    Bramham CR; Worley PF; Moore MJ; Guzowski JF
    J Neurosci; 2008 Nov; 28(46):11760-7. PubMed ID: 19005037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors.
    Shepherd JD; Rumbaugh G; Wu J; Chowdhury S; Plath N; Kuhl D; Huganir RL; Worley PF
    Neuron; 2006 Nov; 52(3):475-84. PubMed ID: 17088213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actin polymerization-dependent increase in synaptic Arc/Arg3.1 expression in the amygdala is crucial for the expression of aversive memory associated with drug withdrawal.
    Liu Y; Zhou QX; Hou YY; Lu B; Yu C; Chen J; Ling QL; Cao J; Chi ZQ; Xu L; Liu JG
    J Neurosci; 2012 Aug; 32(35):12005-17. PubMed ID: 22933785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of neuronal PKA signaling through AKAP targeting dynamics.
    Dell'Acqua ML; Smith KE; Gorski JA; Horne EA; Gibson ES; Gomez LL
    Eur J Cell Biol; 2006 Jul; 85(7):627-33. PubMed ID: 16504338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arc protein: a flexible hub for synaptic plasticity and cognition.
    Nikolaienko O; Patil S; Eriksen MS; Bramham CR
    Semin Cell Dev Biol; 2018 May; 77():33-42. PubMed ID: 28890419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Arc of synaptic memory.
    Bramham CR; Alme MN; Bittins M; Kuipers SD; Nair RR; Pai B; Panja D; Schubert M; Soule J; Tiron A; Wibrand K
    Exp Brain Res; 2010 Jan; 200(2):125-40. PubMed ID: 19690847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Arc of cognition: Signaling cascades regulating Arc and implications for cognitive function and disease.
    Epstein I; Finkbeiner S
    Semin Cell Dev Biol; 2018 May; 77():63-72. PubMed ID: 29559111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo.
    Messaoudi E; Kanhema T; Soulé J; Tiron A; Dagyte G; da Silva B; Bramham CR
    J Neurosci; 2007 Sep; 27(39):10445-55. PubMed ID: 17898216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca
    Sanderson JL; Scott JD; Dell'Acqua ML
    J Neurosci; 2018 Mar; 38(11):2863-2876. PubMed ID: 29440558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin can induce the expression of a memory-related synaptic protein through facilitating AMPA receptor endocytosis in rat cortical neurons.
    Chen TJ; Wang DC; Hung HS; Ho HF
    Cell Mol Life Sci; 2014 Oct; 71(20):4069-80. PubMed ID: 24705985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BDNF mechanisms in late LTP formation: A synthesis and breakdown.
    Panja D; Bramham CR
    Neuropharmacology; 2014 Jan; 76 Pt C():664-76. PubMed ID: 23831365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity.
    Ehrlich I; Malinow R
    J Neurosci; 2004 Jan; 24(4):916-27. PubMed ID: 14749436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular physiology of Arc/Arg3.1: The oligomeric state hypothesis of synaptic plasticity.
    Eriksen MS; Bramham CR
    Acta Physiol (Oxf); 2022 Nov; 236(3):e13886. PubMed ID: 36073248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arc ubiquitination in synaptic plasticity.
    Mabb AM; Ehlers MD
    Semin Cell Dev Biol; 2018 May; 77():10-16. PubMed ID: 28890418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate.
    Waung MW; Pfeiffer BE; Nosyreva ED; Ronesi JA; Huber KM
    Neuron; 2008 Jul; 59(1):84-97. PubMed ID: 18614031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actin polymerization and ERK phosphorylation are required for Arc/Arg3.1 mRNA targeting to activated synaptic sites on dendrites.
    Huang F; Chotiner JK; Steward O
    J Neurosci; 2007 Aug; 27(34):9054-67. PubMed ID: 17715342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.