BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 32888427)

  • 1. Inferring Gene-by-Environment Interactions with a Bayesian Whole-Genome Regression Model.
    Kerin M; Marchini J
    Am J Hum Genet; 2020 Oct; 107(4):698-713. PubMed ID: 32888427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GxEsum: a novel approach to estimate the phenotypic variance explained by genome-wide GxE interaction based on GWAS summary statistics for biobank-scale data.
    Shin J; Lee SH
    Genome Biol; 2021 Jun; 22(1):183. PubMed ID: 34154633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A scalable and robust variance components method reveals insights into the architecture of gene-environment interactions underlying complex traits.
    Pazokitoroudi A; Liu Z; Dahl A; Zaitlen N; Rosset S; Sankararaman S
    Am J Hum Genet; 2024 Jun; ():. PubMed ID: 38866020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A versatile, fast and unbiased method for estimation of gene-by-environment interaction effects on biobank-scale datasets.
    Di Scipio M; Khan M; Mao S; Chong M; Judge C; Pathan N; Perrot N; Nelson W; Lali R; Di S; Morton R; Petch J; Paré G
    Nat Commun; 2023 Aug; 14(1):5196. PubMed ID: 37626057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A scalable and robust variance components method reveals insights into the architecture of gene-environment interactions underlying complex traits.
    Pazokitoroudi A; Dahl A; Zaitlen N; Rosset S; Sankararaman S
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging phenotypic variability to identify genetic interactions in human phenotypes.
    Marderstein AR; Davenport ER; Kulm S; Van Hout CV; Elemento O; Clark AG
    Am J Hum Genet; 2021 Jan; 108(1):49-67. PubMed ID: 33326753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Genetic Marginal Effects to Study Gene-Environment Interactions with GWAS Data.
    Verhulst B; Pritikin JN; Clifford J; Prom-Wormley E
    Behav Genet; 2021 May; 51(3):358-373. PubMed ID: 33899139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide contribution of genotype by environment interaction to variation of diabetes-related traits.
    Zheng JS; Arnett DK; Lee YC; Shen J; Parnell LD; Smith CE; Richardson K; Li D; Borecki IB; Ordovás JM; Lai CQ
    PLoS One; 2013; 8(10):e77442. PubMed ID: 24204828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A non-linear regression method for estimation of gene-environment heritability.
    Kerin M; Marchini J
    Bioinformatics; 2021 Apr; 36(24):5632-5639. PubMed ID: 33367483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide interaction of genotype by erythrocyte n-3 fatty acids contributes to phenotypic variance of diabetes-related traits.
    Zheng JS; Lai CQ; Parnell LD; Lee YC; Shen J; Smith CE; Casas-Agustench P; Richardson K; Li D; Noel SE; Tucker KL; Arnett DK; Borecki IB; Ordovás JM
    BMC Genomics; 2014 Sep; 15(1):781. PubMed ID: 25213455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene-environment interaction explains a part of missing heritability in human body mass index.
    Jung HU; Kim DJ; Baek EJ; Chung JY; Ha TW; Kim HK; Kang JO; Lim JE; Oh B
    Commun Biol; 2023 Mar; 6(1):324. PubMed ID: 36966243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A linear mixed-model approach to study multivariate gene-environment interactions.
    Moore R; Casale FP; Jan Bonder M; Horta D; ; Franke L; Barroso I; Stegle O
    Nat Genet; 2019 Jan; 51(1):180-186. PubMed ID: 30478441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Interaction and Dispersion Effects in the Analysis of Gene-by-Environment Interaction.
    Domingue BW; Kanopka K; Mallard TT; Trejo S; Tucker-Drob EM
    Behav Genet; 2022 Jan; 52(1):56-64. PubMed ID: 34855050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of the overall contribution of gene-environment interaction for obesity-related traits.
    Sulc J; Mounier N; Günther F; Winkler T; Wood AR; Frayling TM; Heid IM; Robinson MR; Kutalik Z
    Nat Commun; 2020 Mar; 11(1):1385. PubMed ID: 32170055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing gene-environment interactions for common and rare variants with binary traits using gene-trait similarity regression.
    Zhao G; Marceau R; Zhang D; Tzeng JY
    Genetics; 2015 Mar; 199(3):695-710. PubMed ID: 25585620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrative analysis of genomic and exposomic data for complex traits and phenotypic prediction.
    Zhou X; Lee SH
    Sci Rep; 2021 Nov; 11(1):21495. PubMed ID: 34728654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiparametric Bayesian variable selection for gene-environment interactions.
    Ren J; Zhou F; Li X; Chen Q; Zhang H; Ma S; Jiang Y; Wu C
    Stat Med; 2020 Feb; 39(5):617-638. PubMed ID: 31863500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic reaction norm models exploiting genotype × environment interaction on sexual precocity indicator traits in Nellore cattle.
    Mota LFM; Fernandes GA; Herrera AC; Scalez DCB; Espigolan R; Magalhães AFB; Carvalheiro R; Baldi F; Albuquerque LG
    Anim Genet; 2020 Mar; 51(2):210-223. PubMed ID: 31944356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unified powerful set-based test for sequencing data analysis of GxE interactions.
    Su YR; Di CZ; Hsu L;
    Biostatistics; 2017 Jan; 18(1):119-131. PubMed ID: 27474101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic heritability: what is it?
    de Los Campos G; Sorensen D; Gianola D
    PLoS Genet; 2015 May; 11(5):e1005048. PubMed ID: 25942577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.