BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32888434)

  • 1. Your Base Editor Might Be Flirting with Single (Stranded) DNA: Faithful On-Target CRISPR Base Editing without Promiscuous Deamination.
    Collins SP; Beisel CL
    Mol Cell; 2020 Sep; 79(5):703-704. PubMed ID: 32888434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BARBEKO'ing in the lab: Versatile CRISPR screens with barcoded base editors.
    Chatterjee P
    Mol Cell; 2021 Aug; 81(15):3046-3047. PubMed ID: 34358458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for Optimization of the Clustered Regularly Interspaced Short Palindromic Repeat-Based Genome Editing System for Enhanced Editing Specificity.
    Wang YM; Wang HZ; Jian YZ; Luo ZT; Shao HW; Zhang WF
    Hum Gene Ther; 2022 Apr; 33(7-8):358-370. PubMed ID: 34963339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Base Editing: The Ever Expanding Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Tool Kit for Precise Genome Editing in Plants.
    Monsur MB; Shao G; Lv Y; Ahmad S; Wei X; Hu P; Tang S
    Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32344599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.
    Grünewald J; Zhou R; Garcia SP; Iyer S; Lareau CA; Aryee MJ; Joung JK
    Nature; 2019 May; 569(7756):433-437. PubMed ID: 30995674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in base editing with an emphasis on an AAV-based strategy.
    Kuang J; Lyu Q; Wang J; Cui Y; Zhao J
    Methods; 2021 Oct; 194():56-64. PubMed ID: 33774157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR single base-editing: in silico predictions to variant clonal cell lines.
    Dickson KA; Field N; Blackman T; Ma Y; Xie T; Kurangil E; Idrees S; Rathnayake SNH; Mahbub RM; Faiz A; Marsh DJ
    Hum Mol Genet; 2023 Aug; 32(17):2704-2716. PubMed ID: 37369005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing.
    Chadwick AC; Wang X; Musunuru K
    Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):1741-1747. PubMed ID: 28751571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed Evolution of CRISPR-Cas9 Base Editors.
    Winter J; Perez-Pinera P
    Trends Biotechnol; 2019 Nov; 37(11):1151-1153. PubMed ID: 31623959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted Mutagenesis in Mice Using a Base Editor.
    Jeong TY; Lim SY; Seong JK; Kim K
    Methods Mol Biol; 2023; 2606():99-119. PubMed ID: 36592311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an Efficient C-to-T Base-Editing System and Its Application to Cellulase Transcription Factor Precise Engineering in Thermophilic Fungus
    Zhang C; Li N; Rao L; Li J; Liu Q; Tian C
    Microbiol Spectr; 2022 Jun; 10(3):e0232121. PubMed ID: 35608343
    [No Abstract]   [Full Text] [Related]  

  • 15. CRISPR base editor screens identify variant function at scale.
    Parrish PCR; Berger AH
    Mol Cell; 2021 Feb; 81(4):647-648. PubMed ID: 33606973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research advances on the development and application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein system].
    Tan JJ; Peng YZ; Huang GT
    Zhonghua Shao Shang Za Zhi; 2021 Jul; 37(7):681-687. PubMed ID: 34304411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Principle and development of single base editing technology and its application in livestock breeding].
    Zhang Y; Zhang C; Wu Y; Yu R; Su J
    Sheng Wu Gong Cheng Xue Bao; 2023 Jan; 39(1):19-33. PubMed ID: 36738198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
    Li C; Brant E; Budak H; Zhang B
    J Zhejiang Univ Sci B; 2021 Apr; 22(4):253-284. PubMed ID: 33835761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A blueprint for gene function analysis through Base Editing in the model plant Physcomitrium (Physcomitrella) patens.
    Guyon-Debast A; Alboresi A; Terret Z; Charlot F; Berthier F; Vendrell-Mir P; Casacuberta JM; Veillet F; Morosinotto T; Gallois JL; Nogué F
    New Phytol; 2021 May; 230(3):1258-1272. PubMed ID: 33421132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.