BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32888620)

  • 21. Food sources are more important than biomagnification on mercury bioaccumulation in marine fishes.
    Yoshino K; Mori K; Kanaya G; Kojima S; Henmi Y; Matsuyama A; Yamamoto M
    Environ Pollut; 2020 Jul; 262():113982. PubMed ID: 32146359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mercury bioaccumulation in fish in an artificial lake used to carry out cage culture.
    Wang Y; Xie Q; Xu Q; Xue J; Zhang C; Wang D
    J Environ Sci (China); 2019 Apr; 78():352-359. PubMed ID: 30665654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury and methylmercury bioaccumulation by polychaete worms is governed by both feeding ecology and mercury bioavailability in coastal mudflats.
    Sizmur T; Canário J; Gerwing TG; Mallory ML; O'Driscoll NJ
    Environ Pollut; 2013 May; 176():18-25. PubMed ID: 23395989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioaccumulation and trophic transfer of mercury in striped bass (Morone saxatilis) and tautog (Tautoga onitis) from the Narragansett Bay (Rhode Island, USA).
    Piraino MN; Taylor DL
    Mar Environ Res; 2009 Apr; 67(3):117-28. PubMed ID: 19150736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The three 'B' of fish mercury in China: Bioaccumulation, biodynamics and biotransformation.
    Wang X; Wang WX
    Environ Pollut; 2019 Jul; 250():216-232. PubMed ID: 30999199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mercury accumulation in freshwater and marine fish from the wild and from aquaculture ponds.
    Zupo V; Graber G; Kamel S; Plichta V; Granitzer S; Gundacker C; Wittmann KJ
    Environ Pollut; 2019 Dec; 255(Pt 1):112975. PubMed ID: 31541831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative study on Hg bioaccumulation and biotransformation in Mediterranean and Atlantic sponge species.
    Orani AM; Vassileva E; Azemard S; Thomas OP
    Chemosphere; 2020 Dec; 260():127515. PubMed ID: 32682130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using sulfur stable isotopes to assess mercury bioaccumulation and biomagnification in temperate lake food webs.
    Clayden MG; Lescord GL; Kidd KA; Wang X; Muir DC; O'Driscoll NJ
    Environ Toxicol Chem; 2017 Mar; 36(3):661-670. PubMed ID: 27648524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mercury bioaccumulation in Tilefish (Lopholatilus chamaeleonticeps) from offshore waters of South Carolina, USA.
    White DB; Sinkus W; Altman KC
    Environ Pollut; 2020 Feb; 257():113549. PubMed ID: 31818615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioaccumulation of mercury and selenium in tissues of the mesopelagic fish Pacific hake (Merluccius productus) from the northern Gulf of California and the risk assessment on human health.
    Acosta-Lizárraga LG; Bergés-Tiznado ME; Bojórquez-Sánchez C; Osuna-Martínez CC; Páez-Osuna F
    Chemosphere; 2020 Sep; 255():126941. PubMed ID: 32388259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ontogenetic patterns in bluefish (Pomatomus saltatrix) feeding ecology and the effect on mercury biomagnification.
    Szczebak JT; Taylor DL
    Environ Toxicol Chem; 2011 Jun; 30(6):1447-58. PubMed ID: 21381087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding the role of ecological factors affecting mercury concentrations in the blue shark (Prionace glauca).
    Riesgo L; Sanpera C; García-Barcelona S; Sánchez-Fortún M; Coll M; Navarro J
    Chemosphere; 2023 Feb; 313():137642. PubMed ID: 36572364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mercury bioaccumulation and its relationship with trophic biomarkers in a Mediterranean elasmobranch mesopredator.
    Díaz-Delgado E; Girolametti F; Annibaldi A; Trueman CN; Willis TJ
    Mar Pollut Bull; 2024 Apr; 201():116218. PubMed ID: 38531207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of body length, trophic position and habitat use on mercury concentrations of sharks from contrasted ecosystems in the southwestern Indian Ocean.
    Le Bourg B; Kiszka JJ; Bustamante P; Heithaus MR; Jaquemet S; Humber F
    Environ Res; 2019 Feb; 169():387-395. PubMed ID: 30529140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ecological drivers of mercury concentrations in fish species in subsistence harvests from Kotzebue Sound, Alaska.
    Cyr AP; López JA; Wooller MJ; Whiting A; Gerlach R; O'Hara T
    Environ Res; 2019 Oct; 177():108622. PubMed ID: 31419713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing nearshore benthic and pelagic prey as mercury sources to lake fish: the importance of prey quality and mercury content.
    Karimi R; Chen CY; Folt CL
    Sci Total Environ; 2016 Sep; 565():211-221. PubMed ID: 27173839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intra- and inter-specific variability in total and methylmercury bioaccumulation by eight marine fish species from the Azores.
    Magalhães MC; Costa V; Menezes GM; Pinho MR; Santos RS; Monteiro LR
    Mar Pollut Bull; 2007 Oct; 54(10):1654-62. PubMed ID: 17727898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mercury concentrations in China's coastal waters and implications for fish consumption by vulnerable populations.
    Tong Y; Wang M; Bu X; Guo X; Lin Y; Lin H; Li J; Zhang W; Wang X
    Environ Pollut; 2017 Dec; 231(Pt 1):396-405. PubMed ID: 28818815
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mercury levels in Southern Ocean squid: Variability over the last decade.
    Seco J; Xavier JC; Brierley AS; Bustamante P; Coelho JP; Gregory S; Fielding S; Pardal MA; Pereira B; Stowasser G; Tarling GA; Pereira E
    Chemosphere; 2020 Jan; 239():124785. PubMed ID: 31726533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of diet composition and trophic structure on mercury bioaccumulation in temperate flatfishes.
    Payne EJ; Taylor DL
    Arch Environ Contam Toxicol; 2010 Feb; 58(2):431-43. PubMed ID: 19997909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.