These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 32888727)
1. Novel adaptive impedance control for exoskeleton robot for rehabilitation using a nonlinear time-delay disturbance observer. Brahmi B; Driscoll M; El Bojairami IK; Saad M; Brahmi A ISA Trans; 2021 Feb; 108():381-392. PubMed ID: 32888727 [TBL] [Abstract][Full Text] [Related]
2. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton. Han S; Wang H; Tian Y; Christov N ISA Trans; 2020 Feb; 97():171-181. PubMed ID: 31399252 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot. Niu J; Yang Q; Chen G; Song R IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear time delay estimation based model reference adaptive impedance control for an upper-limb human-robot interaction. Omrani J; Moghaddam MM Proc Inst Mech Eng H; 2022 Mar; 236(3):385-398. PubMed ID: 34720012 [TBL] [Abstract][Full Text] [Related]
5. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation. Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038 [TBL] [Abstract][Full Text] [Related]
6. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training. Wu Q; Wu H Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005 [TBL] [Abstract][Full Text] [Related]
7. [Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation]. Wang Z; Wang Z; Yang Y; Wang C; Yang G; Li Y Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jan; 46(1):42-46. PubMed ID: 35150106 [TBL] [Abstract][Full Text] [Related]
8. Adaptive control of an exoskeleton robot with uncertainties on kinematics and dynamics. Brahmi B; Saad M; Ochoa-Luna C; Rahman MH IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1369-1374. PubMed ID: 28814011 [TBL] [Abstract][Full Text] [Related]
9. Adaptive interaction torque-based AAN control for lower limb rehabilitation exoskeleton. Wang Y; Wang H; Tian Y ISA Trans; 2022 Sep; 128(Pt A):184-197. PubMed ID: 34716010 [TBL] [Abstract][Full Text] [Related]
10. Robust control of a cable-driven rehabilitation robot for lower and upper limbs. Seyfi NS; Keymasi Khalaji A ISA Trans; 2022 Jun; 125():268-289. PubMed ID: 34294462 [TBL] [Abstract][Full Text] [Related]
11. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton. Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115 [TBL] [Abstract][Full Text] [Related]
12. Adaptive neural fault-tolerant prescribed performance control of a rehabilitation exoskeleton for lower limb passive training. Yang Y; Huang D; Ma L; Liu X; Li Y ISA Trans; 2024 Aug; 151():143-152. PubMed ID: 38853110 [TBL] [Abstract][Full Text] [Related]
13. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation. Ahmed T; Islam MR; Brahmi B; Rahman MH Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155 [TBL] [Abstract][Full Text] [Related]
14. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation. Zhu Y; Zheng T; Jin H; Yang J; Zhao J Technol Health Care; 2015; 24 Suppl 1():S113-22. PubMed ID: 26409545 [TBL] [Abstract][Full Text] [Related]
15. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism. Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953 [TBL] [Abstract][Full Text] [Related]
16. Quantitative and Qualitative Evaluation of Exoskeleton Transparency Controllers for Upper-Limb Neurorehabilitation. Gasperina SD; Ratschat AL; Marchal-Crespo L IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941246 [TBL] [Abstract][Full Text] [Related]
17. Control system design of a 3-DOF upper limbs rehabilitation robot. Denève A; Moughamir S; Afilal L; Zaytoon J Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080 [TBL] [Abstract][Full Text] [Related]
18. Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton. Riani A; Madani T; Hadri AE; Benallegue A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():695-701. PubMed ID: 28813901 [TBL] [Abstract][Full Text] [Related]
19. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton. Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759 [TBL] [Abstract][Full Text] [Related]
20. An Assistive Control Strategy for Rehabilitation Robots Using Velocity Field and Force Field. Asl HJ; Narikiyo T IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():790-795. PubMed ID: 31374727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]