These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32888808)

  • 1. Does Karrikin Signaling Shape the Rhizomicrobiome via the Strigolactone Biosynthetic Pathway?
    Nasir F; Li W; Tran LP; Tian C
    Trends Plant Sci; 2020 Dec; 25(12):1184-1187. PubMed ID: 32888808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strigolactones shape the rhizomicrobiome in rice (Oryza sativa).
    Nasir F; Shi S; Tian L; Chang C; Ma L; Li X; Gao Y; Tian C
    Plant Sci; 2019 Sep; 286():118-133. PubMed ID: 31300137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strigolactones, how are they synthesized to regulate plant growth and development?
    Yoneyama K; Brewer PB
    Curr Opin Plant Biol; 2021 Oct; 63():102072. PubMed ID: 34198192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional redundancy in the control of seedling growth by the karrikin signaling pathway.
    Stanga JP; Morffy N; Nelson DC
    Planta; 2016 Jun; 243(6):1397-406. PubMed ID: 26754282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing and Contrasting the Multiple Roles of Butenolide Plant Growth Regulators: Strigolactones and Karrikins in Plant Development and Adaptation to Abiotic Stresses.
    Yang T; Lian Y; Wang C
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31842355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strigolactones, karrikins and beyond.
    De Cuyper C; Struk S; Braem L; Gevaert K; De Jaeger G; Goormachtig S
    Plant Cell Environ; 2017 Sep; 40(9):1691-1703. PubMed ID: 28558130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Strigolactone Biosynthesis Gene Contributed to the Green Revolution in Rice.
    Wang Y; Shang L; Yu H; Zeng L; Hu J; Ni S; Rao Y; Li S; Chu J; Meng X; Wang L; Hu P; Yan J; Kang S; Qu M; Lin H; Wang T; Wang Q; Hu X; Chen H; Wang B; Gao Z; Guo L; Zeng D; Zhu X; Xiong G; Li J; Qian Q
    Mol Plant; 2020 Jun; 13(6):923-932. PubMed ID: 32222483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GmMAX2-D14 and -KAI interaction-mediated SL and KAR signaling play essential roles in soybean root nodulation.
    Ahmad MZ; Rehman NU; Yu S; Zhou Y; Haq BU; Wang J; Li P; Zeng Z; Zhao J
    Plant J; 2020 Jan; 101(2):334-351. PubMed ID: 31559658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strigolactones enhance root-knot nematode (Meloidogyne graminicola) infection in rice by antagonizing the jasmonate pathway.
    Lahari Z; Ullah C; Kyndt T; Gershenzon J; Gheysen G
    New Phytol; 2019 Oct; 224(1):454-465. PubMed ID: 31125438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis?
    López-Ráez JA
    Planta; 2016 Jun; 243(6):1375-85. PubMed ID: 26627211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of biosynthesis, perception, and functions of strigolactones for promoting arbuscular mycorrhizal symbiosis and managing root parasitic weeds.
    Yoneyama K; Xie X; Yoneyama K; Nomura T; Takahashi I; Asami T; Mori N; Akiyama K; Kusajima M; Nakashita H
    Pest Manag Sci; 2019 Sep; 75(9):2353-2359. PubMed ID: 30843315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strigolactone signaling regulates specialized metabolism in tobacco stems and interactions with stem-feeding herbivores.
    Li S; Joo Y; Cao D; Li R; Lee G; Halitschke R; Baldwin G; Baldwin IT; Wang M
    PLoS Biol; 2020 Aug; 18(8):e3000830. PubMed ID: 32810128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signalling and responses to strigolactones and karrikins.
    Smith SM; Li J
    Curr Opin Plant Biol; 2014 Oct; 21():23-29. PubMed ID: 24996032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Karrikin increases tomato cold tolerance via strigolactone and the abscisic acid signaling network.
    Liu M; Shan Q; Ding E; Gu T; Gong B
    Plant Sci; 2023 Jul; 332():111720. PubMed ID: 37120034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strigolactone biosynthesis and signaling in plant development.
    Lopez-Obando M; Ligerot Y; Bonhomme S; Boyer FD; Rameau C
    Development; 2015 Nov; 142(21):3615-9. PubMed ID: 26534982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that KARRIKIN-INSENSITIVE2 (KAI2) Receptors may Perceive an Unknown Signal that is not Karrikin or Strigolactone.
    Conn CE; Nelson DC
    Front Plant Sci; 2015; 6():1219. PubMed ID: 26779242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strigolactone biosynthesis in rice can occur via a 9-cis-3-OH-10'-apo-β-carotenal intermediate.
    Wang JY; Chen GE; Balakrishna A; Jamil M; Berqdar L; Al-Babili S
    FEBS Lett; 2024 Mar; 598(5):571-578. PubMed ID: 38373744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downregulation of rice DWARF 14 LIKE suppress mesocotyl elongation via a strigolactone independent pathway in the dark.
    Kameoka H; Kyozuka J
    J Genet Genomics; 2015 Mar; 42(3):119-24. PubMed ID: 25819088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smoke and Hormone Mirrors: Action and Evolution of Karrikin and Strigolactone Signaling.
    Morffy N; Faure L; Nelson DC
    Trends Genet; 2016 Mar; 32(3):176-188. PubMed ID: 26851153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strigolactone Biosynthesis Genes of Rice are Required for the Punctual Entry of Arbuscular Mycorrhizal Fungi into the Roots.
    Kobae Y; Kameoka H; Sugimura Y; Saito K; Ohtomo R; Fujiwara T; Kyozuka J
    Plant Cell Physiol; 2018 Mar; 59(3):544-553. PubMed ID: 29325120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.