BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 32889334)

  • 1. Hyperelastic and viscoelastic characterization of hepatic tissue under uniaxial tension in time and frequency domain.
    Estermann SJ; Pahr DH; Reisinger A
    J Mech Behav Biomed Mater; 2020 Dec; 112():104038. PubMed ID: 32889334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Thiel preserved, fresh human, and animal liver tissue in terms of mechanical properties.
    Estermann SJ; Förster-Streffleur S; Hirtler L; Streicher J; Pahr DH; Reisinger A
    Ann Anat; 2021 Jul; 236():151717. PubMed ID: 33689839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of cyclic tensile and stress-relaxation tests on porcine skin.
    Remache D; Caliez M; Gratton M; Dos Santos S
    J Mech Behav Biomed Mater; 2018 Jan; 77():242-249. PubMed ID: 28954243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale.
    Su L; Wang M; Yin J; Ti F; Yang J; Ma C; Liu S; Lu TJ
    Acta Biomater; 2023 Jan; 155():423-435. PubMed ID: 36372152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress relaxation and stress-strain characteristics of porcine amniotic membrane.
    Kikuchi M; Feng Z; Kosawada T; Sato D; Nakamura T; Umezu M
    Biomed Mater Eng; 2016; 27(6):603-611. PubMed ID: 28234244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.
    Then C; Stassen B; Depta K; Silber G
    J Mech Behav Biomed Mater; 2017 Jul; 71():68-79. PubMed ID: 28259786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Model for Viscoelastic Properties of Pericardial Bioprosthetic Valves.
    Rassoli A; Fatouraee N; Guidoin R
    Artif Organs; 2018 Jun; 42(6):630-639. PubMed ID: 29602267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A parameter reduced adaptive quasi-linear viscoelastic model for soft biological tissue in uniaxial tension.
    Aryeetey OJ; Frank M; Lorenz A; Estermann SJ; Reisinger AG; Pahr DH
    J Mech Behav Biomed Mater; 2022 Feb; 126():104999. PubMed ID: 34999491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas.
    Amabili M; Balasubramanian P; Bozzo I; Breslavsky ID; Ferrari G
    J Mech Behav Biomed Mater; 2019 Nov; 99():27-46. PubMed ID: 31330442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of mechanical behavior of a porcine pulmonary artery strip using a randomized uniaxial stretch and stretch-rate protocol.
    Jhun CS; Criscione JC
    Biomed Eng Online; 2008 Jan; 7():4. PubMed ID: 18211719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of temperature dependent mechanical behavior of cartilage.
    Chae Y; Aguilar G; Lavernia EJ; Wong BJ
    Lasers Surg Med; 2003; 32(4):271-8. PubMed ID: 12696094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation.
    Mijailovic AS; Qing B; Fortunato D; Van Vliet KJ
    Acta Biomater; 2018 Apr; 71():388-397. PubMed ID: 29477455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture toughness determination of porcine muscle tissue based on AQLV model derived viscous dissipated energy.
    Aryeetey OJ; Frank M; Lorenz A; Pahr DH
    J Mech Behav Biomed Mater; 2022 Nov; 135():105429. PubMed ID: 36113396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress relaxation of porcine tendon under simulated biological environment: experiment and modeling.
    Łagan SD; Liber-Kneć A
    Acta Bioeng Biomech; 2021; 23(1):59-68. PubMed ID: 34846046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the dynamic viscoelastic response of the ascending aorta imposed via pulsatile flow.
    Pejcic S; Najjari MR; Bisleri G; Rival DE
    J Mech Behav Biomed Mater; 2021 Jun; 118():104395. PubMed ID: 33752093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the Compressive Viscoelastic Properties of Brain Tissue Under Time and Frequency Dependent Loading Conditions.
    Li W; Shepherd DET; Espino DM
    Ann Biomed Eng; 2021 Dec; 49(12):3737-3747. PubMed ID: 34608583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.