These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32889366)

  • 21. Far-UVC Photolysis of Peroxydisulfate for Micropollutant Degradation in Water.
    Yin R; Zhang Y; Wang Y; Zhao J; Shang C
    Environ Sci Technol; 2024 Apr; 58(13):6030-6038. PubMed ID: 38517061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative degradation of N-Nitrosopyrrolidine by the ozone/UV process: Kinetics and pathways.
    Chen Z; Fang J; Fan C; Shang C
    Chemosphere; 2016 May; 150():731-739. PubMed ID: 26733013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of clofibric acid by UV, O
    Wang Y; Li H; Yi P; Zhang H
    J Hazard Mater; 2019 Nov; 379():120771. PubMed ID: 31255848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organic pollutant degradation by UV/peroxydisulfate process: Impacts of UV light source and phosphate buffer.
    Lou F; Qiang Z; Zou X; Lv J; Li M
    Chemosphere; 2022 Apr; 292():133387. PubMed ID: 34952016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concentration-dependent chloride effect on radical distribution and micropollutant degradation in the sulfate radical-based AOPs.
    Sun B; Zheng Y; Shang C; Yin R
    J Hazard Mater; 2022 May; 430():128450. PubMed ID: 35168101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of sulfamethizole from aqueous solution using advanced oxidation processes: effects of pH and salinity.
    Wang AM; Wu CH; Huang EH
    Water Sci Technol; 2020 Dec; 82(11):2425-2431. PubMed ID: 33339796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradation of organic pollutants by ultraviolet/ozone in high salinity condition: Non-radical pathway dominated by singlet oxygen.
    Wang J; Liu H; Ma D; Wang Y; Yao G; Yue Q; Gao B; Wang S; Xu X
    Chemosphere; 2021 Apr; 268():128796. PubMed ID: 33158505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel vacuum UV/ozone/peroxymonosulfate process for efficient degradation of levofloxacin: Performance evaluation and mechanism insight.
    Du J; Wang C; Sun M; Chen G; Liu C; Deng X; Chen R; Zhao Z
    J Hazard Mater; 2024 Feb; 463():132916. PubMed ID: 37951169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ozone- and Hydroxyl Radical-Induced Degradation of Micropollutants in a Novel UVA-LED-Activated Periodate Advanced Oxidation Process.
    Li J; Yang T; Zeng G; An L; Jiang J; Ao Z; Ma J
    Environ Sci Technol; 2023 Nov; 57(47):18607-18616. PubMed ID: 36745772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation.
    Acero JL; Haderlein SB; Schmidt TC; Suter MJ; von Gunten U
    Environ Sci Technol; 2001 Nov; 35(21):4252-9. PubMed ID: 11718338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: Experimental, modeling, transformation mechanism and DFT study.
    Pelalak R; Alizadeh R; Ghareshabani E; Heidari Z
    Sci Total Environ; 2020 Sep; 734():139446. PubMed ID: 32470661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accelerated oxidation of iopamidol by ozone/peroxymonosulfate (O
    Mao Y; Dong H; Liu S; Zhang L; Qiang Z
    Water Res; 2020 Apr; 173():115615. PubMed ID: 32078858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling of ozone decomposition, oxidant exposures, and the abatement of micropollutants during ozonation processes.
    Kim MS; Cha D; Lee KM; Lee HJ; Kim T; Lee C
    Water Res; 2020 Feb; 169():115230. PubMed ID: 31683105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative study on degradation of propranolol and formation of oxidation products by UV/H
    Yang Y; Cao Y; Jiang J; Lu X; Ma J; Pang S; Li J; Liu Y; Zhou Y; Guan C
    Water Res; 2019 Feb; 149():543-552. PubMed ID: 30502740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance characterization and kinetic modeling of ozonation using a new method: R
    Kwon M; Kye H; Jung Y; Yoon Y; Kang JW
    Water Res; 2017 Oct; 122():172-182. PubMed ID: 28599162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.
    Levanov AV; Isaykina OY; Amirova NK; Antipenko EE; Lunin VV
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16554-69. PubMed ID: 26077317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of nano-FeS
    Aseman-Bashiz E; Sayyaf H
    Chemosphere; 2021 Jul; 274():129772. PubMed ID: 33545595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Abatement of Polychoro-1,3-butadienes in Aqueous Solution by Ozone, UV Photolysis, and Advanced Oxidation Processes (O
    Lee M; Merle T; Rentsch D; Canonica S; von Gunten U
    Environ Sci Technol; 2017 Jan; 51(1):497-505. PubMed ID: 27991774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process.
    Yao W; Qu Q; von Gunten U; Chen C; Yu G; Wang Y
    Water Res; 2017 Jan; 108():373-382. PubMed ID: 27839831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2.
    Rosenfeldt EJ; Linden KG; Canonica S; von Gunten U
    Water Res; 2006 Dec; 40(20):3695-704. PubMed ID: 17078993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.