These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32889604)

  • 21. Biochar and earthworms working in tandem: Research opportunities for soil bioremediation.
    Sanchez-Hernandez JC; Ro KS; Díaz FJ
    Sci Total Environ; 2019 Oct; 688():574-583. PubMed ID: 31254823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of biochar on the transformation and earthworm bioaccumulation of organic pollutants in soil.
    Gu J; Zhou W; Jiang B; Wang L; Ma Y; Guo H; Schulin R; Ji R; Evangelou MW
    Chemosphere; 2016 Feb; 145():431-7. PubMed ID: 26694792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The characteristic difference between non-drilosphere and drilosphere-aged biochar: Revealing that earthworms accelerate the aging of biochar.
    Wang J; Liu J; Chang L; Pan Y; Zhai L; Shen Z; Shi L; Chen Y
    Chemosphere; 2023 Apr; 321():138141. PubMed ID: 36804251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative effectiveness of different biochars and conventional organic materials on growth, photosynthesis and cadmium accumulation in cereals.
    Azhar M; Zia Ur Rehman M; Ali S; Qayyum MF; Naeem A; Ayub MA; Anwar Ul Haq M; Iqbal A; Rizwan M
    Chemosphere; 2019 Jul; 227():72-81. PubMed ID: 30981972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochar and ash derived from silicon-rich rice husk decrease inorganic arsenic species in rice grain.
    Leksungnoen P; Wisawapipat W; Ketrot D; Aramrak S; Nookabkaew S; Rangkadilok N; Satayavivad J
    Sci Total Environ; 2019 Sep; 684():360-370. PubMed ID: 31153082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of biochar and thermally treated biochar on Eisenia fetida survival, growth, lysosomal membrane stability and oxidative stress.
    Shi Z; Yan J; Ren X; Wen M; Zhao Y; Wang C
    Sci Total Environ; 2021 May; 770():144778. PubMed ID: 33508671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of trace element bioavailability for two earthworm species after biochar amendment into a contaminated technosol.
    Marchand L; Brunel-Muguet S; Lamy I; Mench M; Pelosi C
    Ecotoxicology; 2017 Dec; 26(10):1378-1391. PubMed ID: 29022159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.
    Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H
    J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil.
    Xu P; Sun CX; Ye XZ; Xiao WD; Zhang Q; Wang Q
    Ecotoxicol Environ Saf; 2016 Oct; 132():94-100. PubMed ID: 27285283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime.
    Denyes MJ; Rutter A; Zeeb BA
    Environ Pollut; 2013 Nov; 182():201-8. PubMed ID: 23933124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A critical review of the possible adverse effects of biochar in the soil environment.
    Brtnicky M; Datta R; Holatko J; Bielska L; Gusiatin ZM; Kucerik J; Hammerschmiedt T; Danish S; Radziemska M; Mravcova L; Fahad S; Kintl A; Sudoma M; Ahmed N; Pecina V
    Sci Total Environ; 2021 Nov; 796():148756. PubMed ID: 34273836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The interaction between biochar and earthworms: Revealing the potential ecological risks of biochar application and the feasibility of their co-application.
    Wang J; Yang Y; Wu J; Zhao K; Zhang X
    Sci Total Environ; 2024 Nov; 950():175240. PubMed ID: 39111445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements.
    Gomez-Eyles JL; Sizmur T; Collins CD; Hodson ME
    Environ Pollut; 2011 Feb; 159(2):616-22. PubMed ID: 21035930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant.
    Ali S; Rizwan M; Noureen S; Anwar S; Ali B; Naveed M; Abd Allah EF; Alqarawi AA; Ahmad P
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):11288-11299. PubMed ID: 30793248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the missing link between soil total antioxidant capacity and herbicide-induced stress on the earthworm Eudrilus eugeniae (Kinberg).
    Mishra CSK; Samal S; Sishu NK; Subhadarshini A; Naik P
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):43179-43190. PubMed ID: 35091931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of biochar and the geophagous earthworm Metaphire guillelmi on fate of (14)C-catechol in an agricultural soil.
    Shan J; Wang Y; Gu J; Zhou W; Ji R; Yan X
    Chemosphere; 2014 Jul; 107():109-114. PubMed ID: 24875877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochar in soil mitigates dimethoate hazard to soil pore water exposed biota.
    Malheiro C; Cardoso DN; Neves J; Lima DLD; Esteves VI; Soares AMVM; Loureiro S
    J Hazard Mater; 2020 Dec; 400():123304. PubMed ID: 32947708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of biochar from peanut shell on speciation and availability of lead and zinc in an acidic paddy soil.
    Chao X; Qian X; Han-Hua Z; Shuai W; Qi-Hong Z; Dao-You H; Yang-Zhu Z
    Ecotoxicol Environ Saf; 2018 Nov; 164():554-561. PubMed ID: 30149354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochar amendment to lead-contaminated soil: Effects on fluorescein diacetate hydrolytic activity and phytotoxicity to rice.
    Tan X; Liu Y; Gu Y; Zeng G; Hu X; Wang X; Hu X; Guo Y; Zeng X; Sun Z
    Environ Toxicol Chem; 2015 Sep; 34(9):1962-8. PubMed ID: 25900615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils.
    Liu X; Yang L; Zhao H; Wang W
    Sci Total Environ; 2020 Mar; 708():134479. PubMed ID: 31796288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.