These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 32889604)
41. Bioaccumulation of benzo[a]pyrene nonextractable residues in soil by Eisenia fetida and associated background-level sublethal genotoxicity (DNA single-strand breaks). Umeh AC; Panneerselvan L; Duan L; Naidu R; Semple KT Sci Total Environ; 2019 Nov; 691():605-610. PubMed ID: 31325860 [TBL] [Abstract][Full Text] [Related]
42. Chlorine weaken the immobilization of Cd in soil-rice systems by biochar. Li H; Li Z; Khaliq MA; Xie T; Chen Y; Wang G Chemosphere; 2019 Nov; 235():1172-1179. PubMed ID: 31561308 [TBL] [Abstract][Full Text] [Related]
43. Combined toxicity of Cd and 2,4-dichlorophenoxyacetic acid on the earthworm Eisenia andrei under biochar amendment. Boughattas I; Zitouni N; Mkhinini M; Missawi O; Helaoui S; Hattab S; Mokni M; Bousserrhine N; Banni M Environ Sci Pollut Res Int; 2023 Mar; 30(12):34915-34931. PubMed ID: 36525191 [TBL] [Abstract][Full Text] [Related]
44. Decrease in the genotoxicity of metal-contaminated soils with biochar amendments. Rees F; Dhyèvre A; Morel JL; Cotelle S Environ Sci Pollut Res Int; 2017 Dec; 24(36):27634-27641. PubMed ID: 28078519 [TBL] [Abstract][Full Text] [Related]
45. Conazole fungicides epoxiconazole and tebuconazole in biochar amended soils: Degradation and bioaccumulation in earthworms. Bošković N; Bílková Z; Šudoma M; Bielská L; Škulcová L; Ribitsch D; Soja G; Hofman J Chemosphere; 2021 Jul; 274():129700. PubMed ID: 33545596 [TBL] [Abstract][Full Text] [Related]
46. Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field. Rehman MZU; Khalid H; Akmal F; Ali S; Rizwan M; Qayyum MF; Iqbal M; Khalid MU; Azhar M Environ Pollut; 2017 Aug; 227():560-568. PubMed ID: 28501770 [TBL] [Abstract][Full Text] [Related]
47. Effect of production temperature and particle size of rice husk biochar on mercury immobilization and erosion prevention of a mercury contaminated soil. Shen Z; Zhang Z; Zhang M; Rinklebe J; Ma Y; Hou D J Hazard Mater; 2021 Oct; 420():126646. PubMed ID: 34329115 [TBL] [Abstract][Full Text] [Related]
48. Effects of wheat straw derived biochar on cadmium availability in a paddy soil and its accumulation in rice. Jing F; Chen C; Chen X; Liu W; Wen X; Hu S; Yang Z; Guo B; Xu Y; Yu Q Environ Pollut; 2020 Feb; 257():113592. PubMed ID: 31761591 [TBL] [Abstract][Full Text] [Related]
49. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system. Yin D; Wang X; Peng B; Tan C; Ma LQ Chemosphere; 2017 Nov; 186():928-937. PubMed ID: 28830065 [TBL] [Abstract][Full Text] [Related]
50. Hybrid ash/biochar biocomposites as soil amendments for the alleviation of cadmium accumulation by Oryza sativa L. in a contaminated paddy field. Lei S; Shi Y; Xue C; Wang J; Che L; Qiu Y Chemosphere; 2020 Jan; 239():124805. PubMed ID: 31520974 [TBL] [Abstract][Full Text] [Related]
51. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system. Xu C; Chen HX; Xiang Q; Zhu HH; Wang S; Zhu QH; Huang DY; Zhang YZ Environ Sci Pollut Res Int; 2018 Jan; 25(2):1147-1156. PubMed ID: 29079982 [TBL] [Abstract][Full Text] [Related]
52. Use of soil amendments to reduce cadmium accumulation in rice by changing Cd distribution in soil aggregates. Li S; Wang M; Zhao Z; Li X; Chen S Environ Sci Pollut Res Int; 2019 Jul; 26(20):20929-20938. PubMed ID: 31115810 [TBL] [Abstract][Full Text] [Related]
53. The soluble fraction from straw-derived biochar supplies nutrients and affects carbon storage of coastal mudflat soil in rice paddy. Zhang J; Zhou S; Sun H; Lü F; He P Environ Sci Pollut Res Int; 2020 May; 27(15):18079-18088. PubMed ID: 32170618 [TBL] [Abstract][Full Text] [Related]
54. Biochar-macrofauna interplay: Searching for new bioindicators. Castracani C; Maienza A; Grasso DA; Genesio L; Malcevschi A; Miglietta F; Vaccari FP; Mori A Sci Total Environ; 2015 Dec; 536():449-456. PubMed ID: 26232755 [TBL] [Abstract][Full Text] [Related]
55. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Cornelissen G; Jubaedah ; Nurida NL; Hale SE; Martinsen V; Silvani L; Mulder J Sci Total Environ; 2018 Sep; 634():561-568. PubMed ID: 29635198 [TBL] [Abstract][Full Text] [Related]
56. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Qiao JT; Liu TX; Wang XQ; Li FB; Lv YH; Cui JH; Zeng XD; Yuan YZ; Liu CP Chemosphere; 2018 Mar; 195():260-271. PubMed ID: 29272795 [TBL] [Abstract][Full Text] [Related]
57. Biochar and nitrate reduce risk of methylmercury in soils under straw amendment. Zhang Y; Liu YR; Lei P; Wang YJ; Zhong H Sci Total Environ; 2018 Apr; 619-620():384-390. PubMed ID: 29156259 [TBL] [Abstract][Full Text] [Related]
58. Effects of an additive (hydroxyapatite-biochar-zeolite) on the chemical speciation of Cd and As in paddy soils and their accumulation and translocation in rice plants. Gu JF; Zhou H; Yang WT; Peng PQ; Zhang P; Zeng M; Liao BH Environ Sci Pollut Res Int; 2018 Mar; 25(9):8608-8619. PubMed ID: 29318486 [TBL] [Abstract][Full Text] [Related]
59. The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity: A farm case study. Hansen V; Müller-Stöver D; Imparato V; Krogh PH; Jensen LS; Dolmer A; Hauggaard-Nielsen H J Environ Manage; 2017 Jan; 186(Pt 1):88-95. PubMed ID: 27815006 [TBL] [Abstract][Full Text] [Related]
60. Evaluating cadmium bioavailability in contaminated rice paddy soils and assessing potential for contaminant immobilisation with biochar. Kosolsaksakul P; Oliver IW; Graham MC J Environ Manage; 2018 Jun; 215():49-56. PubMed ID: 29554627 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]