These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32889718)

  • 41. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters.
    Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J
    Biotechnol Bioeng; 2014 Sep; 111(9):1740-7. PubMed ID: 24752598
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Minimum length of sequence homology required for in vivo cloning by homologous recombination in yeast.
    Hua SB; Qiu M; Chan E; Zhu L; Luo Y
    Plasmid; 1997; 38(2):91-6. PubMed ID: 9339466
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A general cloning system to selectively isolate any eukaryotic or prokaryotic genomic region in yeast.
    Noskov VN; Kouprina N; Leem SH; Ouspenski I; Barrett JC; Larionov V
    BMC Genomics; 2003 Apr; 4(1):16. PubMed ID: 12720573
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The 2-micron plasmid as a nonselectable, stable, high copy number yeast vector.
    Ludwig DL; Bruschi CV
    Plasmid; 1991 Mar; 25(2):81-95. PubMed ID: 1857755
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Yeast (Saccharomyces cerevisiae).
    Hooykaas PJ; den Dulk-Ras A; Bundock P; Soltani J; van Attikum H; van Heusden GP
    Methods Mol Biol; 2006; 344():465-73. PubMed ID: 17033086
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Construction of integrative plasmids suitable for genetic modification of industrial strains of Saccharomyces cerevisiae.
    Leite FC; Dos Anjos RS; Basilio AC; Leal GF; Simões DA; de Morais MA
    Plasmid; 2013 Jan; 69(1):114-7. PubMed ID: 23041652
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
    Shi S; Liang Y; Zhang MM; Ang EL; Zhao H
    Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiple-copy integration in the yeast Yarrowia lipolytica.
    Le Dall MT; Nicaud JM; Gaillardin C
    Curr Genet; 1994 Jul; 26(1):38-44. PubMed ID: 7954894
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel system of genetic transformation allows multiple integrations of a desired gene in Saccharomyces cerevisiae chromosomes.
    Guerra OG; Rubio IG; da Silva Filho CG; Bertoni RA; Dos Santos Govea RC; Vicente EJ
    J Microbiol Methods; 2006 Dec; 67(3):437-45. PubMed ID: 16831478
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Manipulating the yeast genome: deletion, mutation, and tagging by PCR.
    Gardner JM; Jaspersen SL
    Methods Mol Biol; 2014; 1205():45-78. PubMed ID: 25213239
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved efficiency and stability of multiple cloned gene insertions at the delta sequences of Saccharomyces cerevisiae.
    Lee FW; Da Silva NA
    Appl Microbiol Biotechnol; 1997 Sep; 48(3):339-45. PubMed ID: 9352677
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Parameters controlling the rate of gene targeting frequency in the protozoan parasite Leishmania.
    Papadopoulou B; Dumas C
    Nucleic Acids Res; 1997 Nov; 25(21):4278-86. PubMed ID: 9336458
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-Copy Yeast Library Construction and High-Copy Rescue Genetic Screen in Saccharomyces cerevisiae.
    Zeng F; Quintana DG
    Methods Mol Biol; 2021; 2196():77-83. PubMed ID: 32889714
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast.
    Lee NC; Larionov V; Kouprina N
    Nucleic Acids Res; 2015 Apr; 43(8):e55. PubMed ID: 25690893
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expression of a chimeric human/salmon calcitonin gene integrated into the Saccharomyces cerevisiae genome using rDNA sequences as recombination sites.
    Sun H; Zang X; Liu Y; Cao X; Wu F; Huang X; Jiang M; Zhang X
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10097-106. PubMed ID: 26254786
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient design and assembly of custom TALENs using the Golden Gate platform.
    Cermak T; Starker CG; Voytas DF
    Methods Mol Biol; 2015; 1239():133-59. PubMed ID: 25408404
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Versatile genetic assembly system (VEGAS) to assemble pathways for expression in S. cerevisiae.
    Mitchell LA; Chuang J; Agmon N; Khunsriraksakul C; Phillips NA; Cai Y; Truong DM; Veerakumar A; Wang Y; Mayorga M; Blomquist P; Sadda P; Trueheart J; Boeke JD
    Nucleic Acids Res; 2015 Jul; 43(13):6620-30. PubMed ID: 25956652
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DNA insertion system for complex yeast shuttle vectors.
    Daniel J
    Curr Genet; 1995 Mar; 27(4):309-11. PubMed ID: 7614552
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic modification stimulated by the induction of a site-specific break distant from the locus of correction in haploid and diploid yeast Saccharomyces cerevisiae.
    Stuckey S; Storici F
    Methods Mol Biol; 2014; 1114():309-24. PubMed ID: 24557912
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of a system for multicopy gene integration in Saccharomyces cerevisiae.
    Semkiv MV; Dmytruk KV; Sibirny AA
    J Microbiol Methods; 2016 Jan; 120():44-9. PubMed ID: 26529647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.