BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 3288984)

  • 1. Structure of chloramphenicol acetyltransferase at 1.75-A resolution.
    Leslie AG; Moody PC; Shaw WV
    Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4133-7. PubMed ID: 3288984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refined crystal structure of type III chloramphenicol acetyltransferase at 1.75 A resolution.
    Leslie AG
    J Mol Biol; 1990 May; 213(1):167-86. PubMed ID: 2187098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic analysis of substrate binding and catalysis in dihydrolipoyl transacetylase (E2p).
    Mattevi A; Obmolova G; Kalk KH; Teplyakov A; Hol WG
    Biochemistry; 1993 Apr; 32(15):3887-901. PubMed ID: 8471601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refined crystal structure of the catalytic domain of dihydrolipoyl transacetylase (E2p) from Azotobacter vinelandii at 2.6 A resolution.
    Mattevi A; Obmolova G; Kalk KH; Westphal AH; de Kok A; Hol WG
    J Mol Biol; 1993 Apr; 230(4):1183-99. PubMed ID: 8487300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steroid recognition by chloramphenicol acetyltransferase: engineering and structural analysis of a high affinity fusidic acid binding site.
    Murray IA; Cann PA; Day PJ; Derrick JP; Sutcliffe MJ; Shaw WV; Leslie AG
    J Mol Biol; 1995 Dec; 254(5):993-1005. PubMed ID: 7500366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloramphenicol acetyltransferase: enzymology and molecular biology.
    Shaw WV
    CRC Crit Rev Biochem; 1983; 14(1):1-46. PubMed ID: 6340955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization of a type III chloramphenicol acetyl transferase.
    Leslie AG; Liddell JM; Shaw WV
    J Mol Biol; 1986 Mar; 188(2):283-5. PubMed ID: 3522921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative binding modes for chloramphenicol and 1-substituted chloramphenicol analogues revealed by site-directed mutagenesis and X-ray crystallography of chloramphenicol acetyltransferase.
    Murray IA; Lewendon A; Williams JA; Cullis PM; Shaw WV; Leslie AG
    Biochemistry; 1991 Apr; 30(15):3763-70. PubMed ID: 2015231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of the lipoate acetyltransferase of Escherichia coli.
    Russell GC; Guest JR
    Proc Biol Sci; 1991 Feb; 243(1307):155-60. PubMed ID: 1676519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance to fusidic acid in Escherichia coli mediated by the type I variant of chloramphenicol acetyltransferase. A plasmid-encoded mechanism involving antibiotic binding.
    Bennett AD; Shaw WV
    Biochem J; 1983 Oct; 215(1):29-38. PubMed ID: 6354181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of chloramphenicol acetyltransferase III and Escherichia coli β-ketoacylsynthase III co-crystallized with partially hydrolysed acetyl-oxa(dethia)CoA.
    Benjamin AB; Stunkard LM; Ling J; Nice JN; Lohman JR
    Acta Crystallogr F Struct Biol Commun; 2023 Mar; 79(Pt 3):61-69. PubMed ID: 36862094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of naturally occurring hybrid variants of chloramphenicol acetyltransferase to investigate subunit contacts.
    Packman LC; Shaw WV
    Biochem J; 1981 Feb; 193(2):541-52. PubMed ID: 7030311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replacement of catalytic histidine-195 of chloramphenicol acetyltransferase: evidence for a general base role for glutamate.
    Lewendon A; Murray IA; Shaw WV; Gibbs MR; Leslie AG
    Biochemistry; 1994 Feb; 33(7):1944-50. PubMed ID: 7906544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the mechanism of chloramphenicol acetyltransferase by steady-state kinetics. Evidence for a ternary-complex mechanism.
    Kleanthous C; Shaw WV
    Biochem J; 1984 Oct; 223(1):211-20. PubMed ID: 6594136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of the enzymatic inactivation of chloramphenicol by highly purified chloramphenicol acetyltransferase.
    Thibault G; Guitard M; Daigneault R
    Biochim Biophys Acta; 1980 Aug; 614(2):339-42. PubMed ID: 6996733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the hexapeptide xenobiotic acetyltransferase from Pseudomonas aeruginosa.
    Beaman TW; Sugantino M; Roderick SL
    Biochemistry; 1998 May; 37(19):6689-96. PubMed ID: 9578552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition state stabilization by chloramphenicol acetyltransferase. Role of a water molecule bound to threonine 174.
    Lewendon A; Shaw WV
    J Biol Chem; 1993 Oct; 268(28):20997-1001. PubMed ID: 8407936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallization of type I chloramphenicol acetyltransferase: an approach based on the concept of ionic strength reducers.
    Andreeva AE; Borissova BE; Mironova R; Glykos NM; Kotsifaki D; Ivanov I; Krysteva M; Kokkinidis M
    Acta Crystallogr D Biol Crystallogr; 2000 Jan; 56(Pt 1):101-3. PubMed ID: 10666642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of hybrid active sites in oligomeric proteins: kinetic and ligand binding studies with chloramphenicol acetyltransferase trimers.
    Day PJ; Murray IA; Shaw WV
    Biochemistry; 1995 May; 34(19):6416-22. PubMed ID: 7756272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The serine acetyltransferase reaction: acetyl transfer from an acylpantothenyl donor to an alcohol.
    Johnson CM; Roderick SL; Cook PF
    Arch Biochem Biophys; 2005 Jan; 433(1):85-95. PubMed ID: 15581568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.