BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 3288988)

  • 1. Codon choice and gene expression: synonymous codons differ in their ability to direct aminoacylated-transfer RNA binding to ribosomes in vitro.
    Thomas LK; Dix DB; Thompson RC
    Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4242-6. PubMed ID: 3288988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Codon choice and gene expression: synonymous codons differ in translational accuracy.
    Dix DB; Thompson RC
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6888-92. PubMed ID: 2674938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding at the ribosomal A site. The effect of a defined codon-anticodon mismatch upon the behavior of bound aminoacyl transfer RNA.
    Hornig H; Woolley P; Lührmann R
    J Biol Chem; 1984 May; 259(9):5632-6. PubMed ID: 6371008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs.
    Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A GTPase reaction accompanying the rejection of Leu-tRNA2 by UUU-programmed ribosomes. Proofreading of the codon-anticodon interaction by ribosomes.
    Thompson RC; Dix DB; Gerson RB; Karim AM
    J Biol Chem; 1981 Jan; 256(1):81-6. PubMed ID: 6108958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.
    Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W
    EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is there a unique ribosome phenotype for naturally occurring Escherichia coli?
    Mikkola R; Kurland CG
    Biochimie; 1991; 73(7-8):1061-6. PubMed ID: 1720663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of protein biosynthesis. A kinetic study of the reaction of poly(U)-programmed ribosomes with a leucyl-tRNA2-elongation factor Tu-GTP complex.
    Thomposon RC; Dix DB
    J Biol Chem; 1982 Jun; 257(12):6677-82. PubMed ID: 6919538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mechanism of codon-anticodon interaction in ribosomes. Interaction of aminoacyl-tRNA with 70S ribosomes in the absence of elongation factor EF-Tu and GTP].
    Kemkhadze KSh; Odintsov VB; Makhno VI; Semenkov IuP; Kirillov SV
    Mol Biol (Mosk); 1981; 15(4):779-89. PubMed ID: 6912382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rates of aminoacyl-tRNA selection at 29 sense codons in vivo.
    Curran JF; Yarus M
    J Mol Biol; 1989 Sep; 209(1):65-77. PubMed ID: 2478714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proofreading of the codon-anticodon interaction on ribosomes.
    Thompson RC; Stone PJ
    Proc Natl Acad Sci U S A; 1977 Jan; 74(1):198-202. PubMed ID: 319457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rate of cleavage of GTP on the binding of Phe-tRNA.elongation factor Tu.GTP to poly(U)-programmed ribosomes of Escherichia coli.
    Eccleston JF; Dix DB; Thompson RC
    J Biol Chem; 1985 Dec; 260(30):16237-41. PubMed ID: 3905812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein Synthesis in E. coli: Dependence of Codon-Specific Elongation on tRNA Concentration and Codon Usage.
    Rudorf S; Lipowsky R
    PLoS One; 2015; 10(8):e0134994. PubMed ID: 26270805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome.
    Pape T; Wintermeyer W; Rodnina MV
    EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional interaction between release factor one and P-site peptidyl-tRNA on the ribosome.
    Zhang S; Rydén-Aulin M; Isaksson LA
    J Mol Biol; 1996 Aug; 261(2):98-107. PubMed ID: 8757279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Binding of the yeast phenylalanine tRNA with Escherichia coli ribosomes. Effect of the removal of a modified base from the 3'-end of the anticodon on codon-anticodon interaction].
    Katunin VI; Kirillov SV
    Mol Biol (Mosk); 1984; 18(6):1486-96. PubMed ID: 6084167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP, and aminoacyl-tRNA.
    Wolf H; Assmann D; Fischer E
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5324-8. PubMed ID: 364475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of codon shortening and the antibiotics viomycin and sparsomycin upon the behaviour of bound aminoacyl-tRNA. Decoding at the ribosomal A site.
    Hornig H; Woolley P; Lührmann R
    FEBS Lett; 1983 Jun; 156(2):311-5. PubMed ID: 6303858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ribosomal proteins interacting with Phe-tRNAPhe during enzymatic binding with translating ribosome before and after the release of the elongation factor EF-Tu].
    Abdurashidova GG; Ovsepian VA; Chernyĭ AA; Kaminir LB; Budovskiĭ EI
    Mol Biol (Mosk); 1985; 19(3):800-4. PubMed ID: 3897833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of replacing uridine 33 in yeast tRNAPhe on the reaction with ribosomes.
    Dix DB; Wittenberg WL; Uhlenbeck OC; Thompson RC
    J Biol Chem; 1986 Aug; 261(22):10112-8. PubMed ID: 2426258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.