These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 32890483)
1. Systemic alterations in leukocyte subsets and the protective role of NKT cells in the mouse model of diabetic retinopathy. Suvas P; Liu L; Rao P; Steinle JJ; Suvas S Exp Eye Res; 2020 Nov; 200():108203. PubMed ID: 32890483 [TBL] [Abstract][Full Text] [Related]
2. Effects of Diabetes on Microcirculation and Leukostasis in Retinal and Non-Ocular Tissues: Implications for Diabetic Retinopathy. Herdade AS; Silva IM; Calado Â; Saldanha C; Nguyen NH; Hou I; Castanho M; Roy S Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33233433 [TBL] [Abstract][Full Text] [Related]
3. CX3CR1 deficiency accelerates the development of retinopathy in a rodent model of type 1 diabetes. Beli E; Dominguez JM; Hu P; Thinschmidt JS; Caballero S; Li Calzi S; Luo D; Shanmugam S; Salazar TE; Duan Y; Boulton ME; Mohr S; Abcouwer SF; Saban DR; Harrison JK; Grant MB J Mol Med (Berl); 2016 Nov; 94(11):1255-1265. PubMed ID: 27344677 [TBL] [Abstract][Full Text] [Related]
4. MyD88-dependent pathways in leukocytes affect the retina in diabetes. Tang J; Allen Lee C; Du Y; Sun Y; Pearlman E; Sheibani N; Kern TS PLoS One; 2013; 8(7):e68871. PubMed ID: 23874797 [TBL] [Abstract][Full Text] [Related]
5. Effects of peroxisome proliferator-activated receptor gamma and its ligand on blood-retinal barrier in a streptozotocin-induced diabetic model. Muranaka K; Yanagi Y; Tamaki Y; Usui T; Kubota N; Iriyama A; Terauchi Y; Kadowaki T; Araie M Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4547-52. PubMed ID: 17003451 [TBL] [Abstract][Full Text] [Related]
6. Leukostasis and pigment epithelium-derived factor in rat models of diabetic retinopathy. Matsuoka M; Ogata N; Minamino K; Matsumura M Mol Vis; 2007 Jun; 13():1058-65. PubMed ID: 17653050 [TBL] [Abstract][Full Text] [Related]
7. Targeting of 12/15-Lipoxygenase in retinal endothelial cells, but not in monocytes/macrophages, attenuates high glucose-induced retinal leukostasis. Ibrahim AS; Saleh H; El-Shafey M; Hussein KA; El-Masry K; Baban B; Sheibani N; Wang MH; Tawfik A; Al-Shabrawey M Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Jun; 1862(6):636-645. PubMed ID: 28351645 [TBL] [Abstract][Full Text] [Related]
8. CD11b+ bone marrow-derived monocytes are the major leukocyte subset responsible for retinal capillary leukostasis in experimental diabetes in mouse and express high levels of CCR5 in the circulation. Serra AM; Waddell J; Manivannan A; Xu H; Cotter M; Forrester JV Am J Pathol; 2012 Aug; 181(2):719-27. PubMed ID: 22677420 [TBL] [Abstract][Full Text] [Related]
9. Delivery of SAR 1118 to the retina via ophthalmic drops and its effectiveness in a rat streptozotocin (STZ) model of diabetic retinopathy (DR). Rao VR; Prescott E; Shelke NB; Trivedi R; Thomas P; Struble C; Gadek T; O'Neill CA; Kompella UB Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5198-204. PubMed ID: 20445119 [TBL] [Abstract][Full Text] [Related]
10. Protective effects of bestatin in the retina of streptozotocin-induced diabetic mice. Hossain A; Heron D; Davenport I; Huckaba T; Graves R; Mandal T; Muniruzzaman S; Wang S; Bhattacharjee PS Exp Eye Res; 2016 Aug; 149():100-106. PubMed ID: 27344955 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of diabetic leukostasis and blood-retinal barrier breakdown with a soluble form of a receptor for advanced glycation end products. Kaji Y; Usui T; Ishida S; Yamashiro K; Moore TC; Moore J; Yamamoto Y; Yamamoto H; Adamis AP Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):858-65. PubMed ID: 17251488 [TBL] [Abstract][Full Text] [Related]
14. An endothelin type A receptor antagonist reverses upregulated VEGF and ICAM-1 levels in streptozotocin-induced diabetic rat retina. Masuzawa K; Goto K; Jesmin S; Maeda S; Miyauchi T; Kaji Y; Oshika T; Hori S Curr Eye Res; 2006 Jan; 31(1):79-89. PubMed ID: 16421022 [TBL] [Abstract][Full Text] [Related]
15. Decreased lysyl oxidase level protects against development of retinal vascular lesions in diabetic retinopathy. Kim D; Mecham RP; Nguyen NH; Roy S Exp Eye Res; 2019 Jul; 184():221-226. PubMed ID: 31022398 [TBL] [Abstract][Full Text] [Related]
16. AMA0428, A Potent Rock Inhibitor, Attenuates Early and Late Experimental Diabetic Retinopathy. Hollanders K; Hove IV; Sergeys J; Bergen TV; Lefevere E; Kindt N; Castermans K; Vandewalle E; van Pelt J; Moons L; Stalmans I Curr Eye Res; 2017 Feb; 42(2):260-272. PubMed ID: 27399806 [TBL] [Abstract][Full Text] [Related]
17. TNFalpha is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis. Huang H; Gandhi JK; Zhong X; Wei Y; Gong J; Duh EJ; Vinores SA Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1336-44. PubMed ID: 21212173 [TBL] [Abstract][Full Text] [Related]
18. Is leukostasis a crucial step or epiphenomenon in the pathogenesis of diabetic retinopathy? van der Wijk AE; Hughes JM; Klaassen I; Van Noorden CJF; Schlingemann RO J Leukoc Biol; 2017 Oct; 102(4):993-1001. PubMed ID: 28724696 [TBL] [Abstract][Full Text] [Related]
19. Therapeutic potential of histamine H Kwon JW; Lee K; Kim SW; Park J; Hong JJ; Che JH; Seok SH Sci Rep; 2024 Sep; 14(1):22664. PubMed ID: 39349555 [TBL] [Abstract][Full Text] [Related]
20. Bone Marrow CD133 Rong L; Gu X; Xie J; Zeng Y; Li Q; Chen S; Zou T; Xue L; Xu H; Yin ZQ Cell Transplant; 2018 Jun; 27(6):916-936. PubMed ID: 29717657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]