These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32890746)

  • 1. FastField: An open-source toolbox for efficient approximation of deep brain stimulation electric fields.
    Baniasadi M; Proverbio D; Gonçalves J; Hertel F; Husch A
    Neuroimage; 2020 Dec; 223():117330. PubMed ID: 32890746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation.
    Butson CR; McIntyre CC
    Clin Neurophysiol; 2005 Oct; 116(10):2490-500. PubMed ID: 16125463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of methodologies for computing the deep brain stimulation volume of tissue activated.
    Duffley G; Anderson DN; Vorwerk J; Dorval AD; Butson CR
    J Neural Eng; 2019 Oct; 16(6):066024. PubMed ID: 31426036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between neural activation and electric field distribution during deep brain stimulation.
    Astrom M; Diczfalusy E; Martens H; Wardell K
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):664-672. PubMed ID: 25350910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording.
    Lai HY; Liao LD; Lin CT; Hsu JH; He X; Chen YY; Chang JY; Chen HF; Tsang S; Shih YY
    J Neural Eng; 2012 Jun; 9(3):036001. PubMed ID: 22488106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current steering to control the volume of tissue activated during deep brain stimulation.
    Butson CR; McIntyre CC
    Brain Stimul; 2008 Jan; 1(1):7-15. PubMed ID: 19142235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of electrode design on the volume of tissue activated during deep brain stimulation.
    Butson CR; McIntyre CC
    J Neural Eng; 2006 Mar; 3(1):1-8. PubMed ID: 16510937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode.
    Zhang TC; Grill WM
    J Neural Eng; 2010 Dec; 7(6):066009. PubMed ID: 21084730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.
    Walckiers G; Fuchs B; Thiran JP; Mosig JR; Pollo C
    J Neurosci Methods; 2010 Jan; 186(1):90-6. PubMed ID: 19895845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of methodologies for modeling directional deep brain stimulation electrodes.
    Frankemolle-Gilbert AM; Howell B; Bower KL; Veltink PH; Heida T; McIntyre CC
    PLoS One; 2021; 16(12):e0260162. PubMed ID: 34910744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing deep brain stimulation parameter selection with detailed models of the electrode-tissue interface.
    McIntyre CC; Butson CR; Maks CB; Noecker AM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():893-5. PubMed ID: 17946871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial neural network based characterization of the volume of tissue activated during deep brain stimulation.
    Chaturvedi A; Luján JL; McIntyre CC
    J Neural Eng; 2013 Oct; 10(5):056023. PubMed ID: 24060691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the depth electrode-brain interface in deep brain stimulation using finite element models with graded complexity in structure and solution.
    Yousif N; Liu X
    J Neurosci Methods; 2009 Oct; 184(1):142-51. PubMed ID: 19596028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep brain stimulation electrode modeling in rats.
    Andree A; Li N; Butenko K; Kober M; Chen JZ; Higuchi T; Fauser M; Storch A; Ip CW; Kühn AA; Horn A; van Rienen U
    Exp Neurol; 2022 Apr; 350():113978. PubMed ID: 35026227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes.
    Howell B; Huynh B; Grill WM
    J Neural Eng; 2015 Aug; 12(4):046030. PubMed ID: 26170244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational analysis of non-invasive deep brain stimulation based on interfering electric fields.
    Karimi F; Attarpour A; Amirfattahi R; Nezhad AZ
    Phys Med Biol; 2019 Dec; 64(23):235010. PubMed ID: 31661678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical deep brain stimulation strategies for orientation-selective pathway activation.
    Slopsema JP; Peña E; Patriat R; Lehto LJ; Gröhn O; Mangia S; Harel N; Michaeli S; Johnson MD
    J Neural Eng; 2018 Oct; 15(5):056029. PubMed ID: 30095084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OSS-DBS: Open-source simulation platform for deep brain stimulation with a comprehensive automated modeling.
    Butenko K; Bahls C; Schröder M; Köhling R; van Rienen U
    PLoS Comput Biol; 2020 Jul; 16(7):e1008023. PubMed ID: 32628719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the effects of deep brain stimulation with diffusion tensor based electric field models.
    Butson CR; Cooper SE; Henderson JM; McIntyre CC
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):429-37. PubMed ID: 17354801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.