BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32891162)

  • 1. Bacillus sphaericus exposure reduced vector competence of Anopheles dirus to Plasmodium yoelii by upregulating the Imd signaling pathway.
    Yu S; Wang P; Qin J; Zheng H; Wang J; Liu T; Yang X; Wang Y
    Parasit Vectors; 2020 Sep; 13(1):446. PubMed ID: 32891162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Function of TEP1 gene during Plasmodium yoelii infection in Anopheles dirus].
    Wang YY; Wang Y; Zhang J; Duan JH; Huang FS
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2011 Feb; 29(1):25-8. PubMed ID: 21823319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ability of TEP1 in intestinal flora to modulate natural resistance of Anopheles dirus.
    Wang Y; Wang Y; Zhang J; Xu W; Zhang J; Huang FS
    Exp Parasitol; 2013 Aug; 134(4):460-5. PubMed ID: 23648664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Late-phase immune responses limiting oocyst survival are independent of TEP1 function yet display strain specific differences in Anopheles gambiae.
    Kwon H; Arends BR; Smith RC
    Parasit Vectors; 2017 Aug; 10(1):369. PubMed ID: 28764765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Bacillus sphaericus exposure on Anopheles dirus's fecundity and resistance development.
    Yu S; Ji C; Zhu X; Xue J; Wang L; Wang Y
    Parasitol Res; 2017 Mar; 116(3):859-864. PubMed ID: 28012029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmodium yoelii: contribution of oocysts melanization to natural refractoriness in Anopheles dirus.
    Wen-Yue X; Jian Z; Tao-Li Z; Fu-Sheng H; Jian-Hua D; Ying W; Zhong-Wen Q; Li-Sha X
    Exp Parasitol; 2007 Aug; 116(4):433-9. PubMed ID: 17416360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NF-κB-Like Signaling Pathway REL2 in Immune Defenses of the Malaria Vector
    Zakovic S; Levashina EA
    Front Cell Infect Microbiol; 2017; 7():258. PubMed ID: 28680852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anopheles Imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action.
    Garver LS; Bahia AC; Das S; Souza-Neto JA; Shiao J; Dong Y; Dimopoulos G
    PLoS Pathog; 2012; 8(6):e1002737. PubMed ID: 22685401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection of Anopheles dirus for refractoriness and susceptibility to Plasmodium yoelii nigeriensis.
    Somboon P; Prapanthadara L; Suwonkerd W
    Med Vet Entomol; 1999 Oct; 13(4):355-61. PubMed ID: 10608223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of NF-kβ factor Rel2 during Plasmodium falciparum and bacterial infection in Anopheles dirus.
    Khan MB; Liew JW; Leong CS; Lau YL
    Parasit Vectors; 2016 Sep; 9(1):525. PubMed ID: 27688040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of prophenoloxidases in the suppression of Plasmodium yoelii development by Anopheles dirus.
    Wang Y; Hao H; Qiu ZW; Xu WY; Zhang J; Zhou TL; Zhang XL; Huang FS
    Exp Parasitol; 2009 Sep; 123(1):6-10. PubMed ID: 19540233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two serine proteases from Anopheles dirus haemocytes exhibit changes in transcript abundance after infection of an incompatible rodent malaria parasite, Plasmodium yoelii.
    Xu W; Huang FS; Hao HX; Duan JH; Qiu ZW
    Vet Parasitol; 2006 Jun; 139(1-3):93-101. PubMed ID: 16567047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trypsin and aminopeptidase activities in blood-fed females Anopheles dirus (Diptera: Culicidae) of differing susceptibility to Plasmodium yoelii nigeriensis.
    Somboon P; Prapanthadara LA
    Southeast Asian J Trop Med Public Health; 2002 Dec; 33(4):691-3. PubMed ID: 12757211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of anti-mosquito-midgut antibodies on the development of oocysts of Plasmodium yoelii in Anopheles stephensi].
    Wei QF; Gao XZ
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2000; 18(4):197-9. PubMed ID: 12567656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapamycin inhibits pathogen transmission in mosquitoes by promoting immune activation.
    Feng Y; Chen L; Gao L; Dong L; Wen H; Song X; Luo F; Cheng G; Wang J
    PLoS Pathog; 2021 Feb; 17(2):e1009353. PubMed ID: 33626094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between a fungal entomopathogen and malaria parasites within a mosquito vector.
    Heinig RL; Thomas MB
    Malar J; 2015 Jan; 14():22. PubMed ID: 25626485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Innexin AGAP001476 is critical for mediating anti-Plasmodium responses in Anopheles mosquitoes.
    Li MW; Wang J; Zhao YO; Fikrig E
    J Biol Chem; 2014 Sep; 289(36):24885-97. PubMed ID: 25035430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ovary specific immune response during Plasmodium yoelii yoelii infection in malaria vector Anopheles stephensi (Diptera:Insecta).
    Gakhar SK; Shandilya H
    Indian J Exp Biol; 2002 May; 40(5):609-13. PubMed ID: 12622212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consequences of larval competition and exposure to permethrin for the development of the rodent malaria Plasmodium berghei in the mosquito Anopheles gambiae.
    Hauser G; Thiévent K; Koella JC
    Parasit Vectors; 2020 Feb; 13(1):107. PubMed ID: 32106886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mosquito immune responses and compatibility between Plasmodium parasites and anopheline mosquitoes.
    Jaramillo-Gutierrez G; Rodrigues J; Ndikuyeze G; Povelones M; Molina-Cruz A; Barillas-Mury C
    BMC Microbiol; 2009 Jul; 9():154. PubMed ID: 19643026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.