BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 32891754)

  • 1. Sodium-glucose cotransporter-2 inhibitors for diabetic kidney disease: Targeting Warburg effects in proximal tubular cells.
    Morita M; Kanasaki K
    Diabetes Metab; 2020 Oct; 46(5):353-361. PubMed ID: 32891754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SGLT2 Inhibition for the Prevention and Treatment of Diabetic Kidney Disease: A Review.
    Alicic RZ; Johnson EJ; Tuttle KR
    Am J Kidney Dis; 2018 Aug; 72(2):267-277. PubMed ID: 29866460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms Leading to Differential Hypoxia-Inducible Factor Signaling in the Diabetic Kidney: Modulation by SGLT2 Inhibitors and Hypoxia Mimetics.
    Packer M
    Am J Kidney Dis; 2021 Feb; 77(2):280-286. PubMed ID: 32711072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tubular hypothesis of nephron filtration and diabetic kidney disease.
    Vallon V; Thomson SC
    Nat Rev Nephrol; 2020 Jun; 16(6):317-336. PubMed ID: 32152499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium glucose cotransporter 2 and the diabetic kidney.
    Komala MG; Panchapakesan U; Pollock C; Mather A
    Curr Opin Nephrol Hypertens; 2013 Jan; 22(1):113-9. PubMed ID: 23042029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competing Effects of Renin Angiotensin System Blockade and Sodium-Glucose Cotransporter-2 Inhibitors on Erythropoietin Secretion in Diabetes.
    Marathias KP; Lambadiari VA; Markakis KP; Vlahakos VD; Bacharaki D; Raptis AE; Dimitriadis GD; Vlahakos DV
    Am J Nephrol; 2020; 51(5):349-356. PubMed ID: 32241009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium glucose cotransporter 2 inhibition in the diabetic kidney: an update.
    Novikov A; Vallon V
    Curr Opin Nephrol Hypertens; 2016 Jan; 25(1):50-8. PubMed ID: 26575393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolytic lactate in diabetic kidney disease.
    Darshi M; Kugathasan L; Maity S; Sridhar VS; Fernandez R; Limonte CP; Grajeda BI; Saliba A; Zhang G; Drel VR; Kim JJ; Montellano R; Tumova J; Montemayor D; Wang Z; Liu JJ; Wang J; Perkins BA; Lytvyn Y; Natarajan L; Lim SC; Feldman H; Toto R; Sedor JR; Patel J; Waikar SS; Brown J; Osman Y; He J; Chen J; Reeves WB; de Boer IH; Roy S; Vallon V; Hallan S; Gelfond JA; Cherney DZ; Sharma K;
    JCI Insight; 2024 Jun; 9(11):. PubMed ID: 38855868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: A novel conceptual framework.
    Packer M
    Diabetes Obes Metab; 2020 May; 22(5):734-742. PubMed ID: 31916329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules.
    Li J; Liu H; Takagi S; Nitta K; Kitada M; Srivastava SP; Takagaki Y; Kanasaki K; Koya D
    JCI Insight; 2020 Mar; 5(6):. PubMed ID: 32134397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal Effects of Sodium-Glucose Co-Transporter Inhibitors.
    Thomson SC; Vallon V
    Am J Cardiol; 2019 Dec; 124 Suppl 1(Suppl 1):S28-S35. PubMed ID: 31741437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of SGLT2 inhibition in human kidney proximal tubular cells--renoprotection in diabetic nephropathy?
    Panchapakesan U; Pegg K; Gross S; Komala MG; Mudaliar H; Forbes J; Pollock C; Mather A
    PLoS One; 2013; 8(2):e54442. PubMed ID: 23390498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Role for Sodium-Glucose Cotransporter 2 Inhibitors in the Treatment of Chronic Kidney Disease: A Mini Review.
    Song J; Li X; Ni J
    Kidney Blood Press Res; 2023; 48(1):599-610. PubMed ID: 37717569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SGLT2 Inhibitors and the Diabetic Kidney.
    Fioretto P; Zambon A; Rossato M; Busetto L; Vettor R
    Diabetes Care; 2016 Aug; 39 Suppl 2():S165-71. PubMed ID: 27440829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal protection by sodium-glucose cotransporter 2 inhibitors and its underlying mechanisms in diabetic kidney disease.
    Mima A
    J Diabetes Complications; 2018 Jul; 32(7):720-725. PubMed ID: 29880432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new era of diabetic kidney disease treatment with sodium-glucose cotransporter-2 inhibitors.
    Kume S; Maegawa H
    J Diabetes Investig; 2022 May; 13(5):765-767. PubMed ID: 35029051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardioprotection conferred by sodium-glucose cotransporter 2 inhibitors: a renal proximal tubule perspective.
    Silva Dos Santos D; Polidoro JZ; Borges-JĂșnior FA; Girardi ACC
    Am J Physiol Cell Physiol; 2020 Feb; 318(2):C328-C336. PubMed ID: 31721613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium Glucose Cotransporter 2 Inhibition Heralds a Call-to-Action for Diabetic Kidney Disease.
    Tuttle KR; Cherney DZ;
    Clin J Am Soc Nephrol; 2020 Feb; 15(2):285-288. PubMed ID: 31740570
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors.
    Packer M
    J Am Soc Nephrol; 2020 May; 31(5):907-919. PubMed ID: 32276962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic and hemodynamic effects of sodium-dependent glucose cotransporter 2 inhibitors on cardio-renal protection in the treatment of patients with type 2 diabetes mellitus.
    Kashiwagi A; Maegawa H
    J Diabetes Investig; 2017 Jul; 8(4):416-427. PubMed ID: 28178390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.