These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32891874)

  • 21. Identification of a Golgi complex-targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein.
    Cohen JR; Lin LD; Machamer CE
    J Virol; 2011 Jun; 85(12):5794-803. PubMed ID: 21450821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insertion/deletion hotspots in the Nsp2, Nsp3, S1, and ORF8 genes of SARS-related coronaviruses.
    Akaishi T; Fujiwara K; Ishii T
    BMC Ecol Evol; 2022 Oct; 22(1):123. PubMed ID: 36307763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tight junction protein Par6 interacts with an evolutionarily conserved region in the amino terminus of PALS1/stardust.
    Wang Q; Hurd TW; Margolis B
    J Biol Chem; 2004 Jul; 279(29):30715-21. PubMed ID: 15140881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An update on the origin of SARS-CoV-2: Despite closest identity, bat (RaTG13) and pangolin derived coronaviruses varied in the critical binding site and O-linked glycan residues.
    Malaiyan J; Arumugam S; Mohan K; Gomathi Radhakrishnan G
    J Med Virol; 2021 Jan; 93(1):499-505. PubMed ID: 32633815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination.
    Lau SK; Feng Y; Chen H; Luk HK; Yang WH; Li KS; Zhang YZ; Huang Y; Song ZZ; Chow WN; Fan RY; Ahmed SS; Yeung HC; Lam CS; Cai JP; Wong SS; Chan JF; Yuen KY; Zhang HL; Woo PC
    J Virol; 2015 Oct; 89(20):10532-47. PubMed ID: 26269185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Putative hAPN receptor binding sites in SARS_CoV spike protein.
    Yu XJ; Luo C; Lin JC; Hao P; He YY; Guo ZM; Qin L; Su J; Liu BS; Huang Y; Nan P; Li CS; Xiong B; Luo XM; Zhao GP; Pei G; Chen KX; Shen X; Shen JH; Zou JP; He WZ; Shi TL; Zhong Y; Jiang HL; Li YX
    Acta Pharmacol Sin; 2003 Jun; 24(6):481-8. PubMed ID: 12791172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ORF8a as a viroporin in SARS-CoV-2 infection?
    Zandi M
    Cytokine Growth Factor Rev; 2021 Oct; 61():1. PubMed ID: 34362671
    [No Abstract]   [Full Text] [Related]  

  • 28. Genomic recombination events may reveal the evolution of coronavirus and the origin of SARS-CoV-2.
    Zhu Z; Meng K; Meng G
    Sci Rep; 2020 Dec; 10(1):21617. PubMed ID: 33303849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A single tyrosine in the severe acute respiratory syndrome coronavirus membrane protein cytoplasmic tail is important for efficient interaction with spike protein.
    McBride CE; Machamer CE
    J Virol; 2010 Feb; 84(4):1891-901. PubMed ID: 20007283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors.
    Liu S; Xiao G; Chen Y; He Y; Niu J; Escalante CR; Xiong H; Farmar J; Debnath AK; Tien P; Jiang S
    Lancet; 2004 Mar; 363(9413):938-47. PubMed ID: 15043961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solution structure of the severe acute respiratory syndrome-coronavirus heptad repeat 2 domain in the prefusion state.
    Hakansson-McReynolds S; Jiang S; Rong L; Caffrey M
    J Biol Chem; 2006 Apr; 281(17):11965-71. PubMed ID: 16507566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comprehensive Structural and Molecular Comparison of Spike Proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and Their Interactions with ACE2.
    Hatmal MM; Alshaer W; Al-Hatamleh MAI; Hatmal M; Smadi O; Taha MO; Oweida AJ; Boer JC; Mohamud R; Plebanski M
    Cells; 2020 Dec; 9(12):. PubMed ID: 33302501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the genomic and proteomic variations of SARS-CoV-2 spike glycoprotein: A computational biology approach.
    Lokman SM; Rasheduzzaman M; Salauddin A; Barua R; Tanzina AY; Rumi MH; Hossain MI; Siddiki AMAMZ; Mannan A; Hasan MM
    Infect Genet Evol; 2020 Oct; 84():104389. PubMed ID: 32502733
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The genetic sequence, origin, and diagnosis of SARS-CoV-2.
    Wang H; Li X; Li T; Zhang S; Wang L; Wu X; Liu J
    Eur J Clin Microbiol Infect Dis; 2020 Sep; 39(9):1629-1635. PubMed ID: 32333222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Why Does the Novel Coronavirus Spike Protein Interact so Strongly with the Human ACE2? A Thermodynamic Answer.
    de Andrade J; Gonçalves PFB; Netz PA
    Chembiochem; 2021 Mar; 22(5):865-875. PubMed ID: 33084150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coronavirus virulence genes with main focus on SARS-CoV envelope gene.
    DeDiego ML; Nieto-Torres JL; Jimenez-Guardeño JM; Regla-Nava JA; Castaño-Rodriguez C; Fernandez-Delgado R; Usera F; Enjuanes L
    Virus Res; 2014 Dec; 194():124-37. PubMed ID: 25093995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Flexible, Extended Coil of the PDZ-Binding Motif of the Three Deadly Human Coronavirus E Proteins Plays a Role in Pathogenicity.
    Schoeman D; Cloete R; Fielding BC
    Viruses; 2022 Aug; 14(8):. PubMed ID: 36016329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel SARS-CoV-2 related coronavirus in bats from Cambodia.
    Delaune D; Hul V; Karlsson EA; Hassanin A; Ou TP; Baidaliuk A; Gámbaro F; Prot M; Tu VT; Chea S; Keatts L; Mazet J; Johnson CK; Buchy P; Dussart P; Goldstein T; Simon-Lorière E; Duong V
    Nat Commun; 2021 Nov; 12(1):6563. PubMed ID: 34753934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative analysis of ACE2 binding to coronavirus spike proteins: SARS-CoV-2
    Li Z; Zhang JZH
    Phys Chem Chem Phys; 2021 Jun; 23(25):13926-13933. PubMed ID: 34137759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential Pathogenicity Determinants Identified from Structural Proteomics of SARS-CoV and SARS-CoV-2.
    Prates ET; Garvin MR; Pavicic M; Jones P; Shah M; Demerdash O; Amos BK; Geiger A; Jacobson D
    Mol Biol Evol; 2021 Jan; 38(2):702-715. PubMed ID: 32941612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.