These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 32892000)

  • 21. 100 years of anthropogenic impact causes changes in freshwater functional biodiversity.
    Eastwood N; Zhou J; Derelle R; Abdallah MA; Stubbings WA; Jia Y; Crawford SE; Davidson TA; Colbourne JK; Creer S; Bik H; Hollert H; Orsini L
    Elife; 2023 Nov; 12():. PubMed ID: 37933221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication.
    Monchamp ME; Spaak P; Domaizon I; Dubois N; Bouffard D; Pomati F
    Nat Ecol Evol; 2018 Feb; 2(2):317-324. PubMed ID: 29230026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction among spring phytoplankton succession, water discharge patterns, and hydrogen peroxide dynamics in the Caloosahatchee River in southwest Florida.
    Urakawa H; Steele JH; Hancock TL; Dahedl EK; Schroeder ER; Sereda JV; Kratz MA; García PE; Armstrong RA
    Harmful Algae; 2023 Jul; 126():102434. PubMed ID: 37290882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dominance of evaporation on lacustrine groundwater discharge to regulate lake nutrient state and algal blooms.
    Shi X; Luo X; Jiao JJ; Zuo J
    Water Res; 2022 Jul; 219():118620. PubMed ID: 35598468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sedimentary ancient DNA metabarcoding delineates the contrastingly temporal change of lake cyanobacterial communities.
    Cao X; Xu X; Bian R; Wang Y; Yu H; Xu Y; Duan G; Bi L; Chen P; Gao S; Wang J; Peng J; Qu J
    Water Res; 2020 Sep; 183():116077. PubMed ID: 32693300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial heterogeneity of cyanobacterial communities and genetic variation of microcystis populations within large, shallow eutrophic lakes (Lake Taihu and Lake Chaohu, China).
    Cai Y; Kong F; Shi L; Yu Y
    J Environ Sci (China); 2012; 24(10):1832-42. PubMed ID: 23520854
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics of the benthic and planktic microbiomes in a Planktothrix-dominated toxic cyanobacterial bloom in Australia.
    Foysal MJ; Timms V; Neilan BA
    Water Res; 2024 Feb; 249():120980. PubMed ID: 38101053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted deep sequencing reveals high diversity and variable dominance of bloom-forming cyanobacteria in eutrophic lakes.
    Jiang Y; Xiao P; Liu Y; Wang J; Li R
    Harmful Algae; 2017 Apr; 64():42-50. PubMed ID: 28427571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of Bayesian network including Microcystis morphospecies for microcystin risk assessment in three cyanobacterial bloom-plagued lakes, China.
    Shan K; Shang M; Zhou B; Li L; Wang X; Yang H; Song L
    Harmful Algae; 2019 Mar; 83():14-24. PubMed ID: 31097252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Apparent relationships between anthropogenic factors and climate change indicators and POPs deposition in a lacustrine system.
    Zhang H; Huo S; Yeager KM; Li C; Xi B; Zhang J; He Z; Ma C
    J Environ Sci (China); 2019 Sep; 83():174-182. PubMed ID: 31221380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication.
    Yang C; Yang P; Geng J; Yin H; Chen K
    Environ Pollut; 2020 Jul; 262():114292. PubMed ID: 32179221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemodiversity of Cyanobacterial Toxins Driven by Future Scenarios of Climate Warming and Eutrophication.
    Yang Y; Wang H; Yan S; Wang T; Zhang P; Zhang H; Wang H; Hansson LA; Xu J
    Environ Sci Technol; 2023 Aug; 57(32):11767-11778. PubMed ID: 37535835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Satellite Tracking Reveals the Speed Up of the Lacustrine Algal Bloom Drift in Response to Climate Change.
    Wang D; Li L; Ning R; Shao Y; Li H; Shi X; Xue Z; Togbah CF; Yu S; Gao N
    Environ Sci Technol; 2024 Jul; 58(26):11727-11736. PubMed ID: 38836508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of driving factors for the long-term succession of bloom-forming cyanobacterial genera in Lake Erhai, southwest China.
    Peng K; Liu X; Cheng H; Xu M; Liu Y; Yang H; Liu P; Yang S
    J Environ Manage; 2024 Feb; 351():119729. PubMed ID: 38056335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrological regulation drives regime shifts: evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake.
    Kong X; He Q; Yang B; He W; Xu F; Janssen AB; Kuiper JJ; van Gerven LP; Qin N; Jiang Y; Liu W; Yang C; Bai Z; Zhang M; Kong F; Janse JH; Mooij WM
    Glob Chang Biol; 2017 Feb; 23(2):737-754. PubMed ID: 27391103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Response of the photosynthetic activity and biomass of the phytoplankton community to increasing nutrients during cyanobacterial blooms in Meiliang Bay, Lake Taihu.
    Wu P; Lu Y; Lu Y; Dai J; Huang T
    Water Environ Res; 2020 Jan; 92(1):138-148. PubMed ID: 31486194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Spatial and Temporal Dynamics of Floating Algal Blooms in Lake Chaohu in 2016 and Their Environmental Drivers].
    Hu MQ; Zhang YC; Ma RH; Zhang YX
    Huan Jing Ke Xue; 2018 Nov; 39(11):4925-4937. PubMed ID: 30628214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Long-term pattern of lake ecosystem in response to eutrophication and water regulation in Chenghai Lake, Yunnan, China].
    Liu YY; Chen GJ; Huang LP; Chen ZD; Huang GC; Liu XL; Li R
    Ying Yong Sheng Tai Xue Bao; 2020 May; 31(5):1725-1734. PubMed ID: 32530252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of environmental drivers influencing interspecific variations and associations among bloom-forming cyanobacteria in large, shallow eutrophic lakes.
    Shan K; Song L; Chen W; Li L; Liu L; Wu Y; Jia Y; Zhou Q; Peng L
    Harmful Algae; 2019 Apr; 84():84-94. PubMed ID: 31128816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling interactive effects of multiple disturbances on a coastal lake ecosystem: Implications for management.
    Jones HFE; Özkundakci D; McBride CG; Pilditch CA; Allan MG; Hamilton DP
    J Environ Manage; 2018 Feb; 207():444-455. PubMed ID: 29195169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.