These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 32892043)

  • 1. Global direct nitrous oxide emissions from the bioenergy crop sugarcane (Saccharum spp. inter-specific hybrids).
    Yang L; Deng Y; Wang X; Zhang W; Shi X; Chen X; Lakshmanan P; Zhang F
    Sci Total Environ; 2021 Jan; 752():141795. PubMed ID: 32892043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review and analysis of global agricultural N₂O emissions relevant to the UK.
    Buckingham S; Anthony S; Bellamy PH; Cardenas LM; Higgins S; McGeough K; Topp CF
    Sci Total Environ; 2014 Jul; 487():164-72. PubMed ID: 24784741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations.
    Harty MA; Forrestal PJ; Watson CJ; McGeough KL; Carolan R; Elliot C; Krol D; Laughlin RJ; Richards KG; Lanigan GJ
    Sci Total Environ; 2016 Sep; 563-564():576-86. PubMed ID: 27155080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrous oxide emissions from China's croplands based on regional and crop-specific emission factors deviate from IPCC 2006 estimates.
    Aliyu G; Luo J; Di HJ; Lindsey S; Liu D; Yuan J; Chen Z; Lin Y; He T; Zaman M; Ding W
    Sci Total Environ; 2019 Jun; 669():547-558. PubMed ID: 30889444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved prediction of farm nitrous oxide emission through an understanding of the interaction among climate extremes, soil nitrogen dynamics and irrigation water.
    Maraseni T; Kodur S
    J Environ Manage; 2019 Oct; 248():109278. PubMed ID: 31336339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrous oxide emissions in Chinese vegetable systems: A meta-analysis.
    Wang X; Zou C; Gao X; Guan X; Zhang W; Zhang Y; Shi X; Chen X
    Environ Pollut; 2018 Aug; 239():375-383. PubMed ID: 29674216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of low C/N crop residue input on N
    Akiyama H; Yamamoto A; Uchida Y; Hoshino YT; Tago K; Wang Y; Hayatsu M
    Sci Total Environ; 2020 Apr; 713():136677. PubMed ID: 32019033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New trends in sugarcane fertilization: Implications for NH
    Oliveira BG; Lourenço KS; Carvalho JLN; Gonzaga LC; Teixeira MC; Tamara AF; Soares JR; Cantarella H
    J Environ Manage; 2023 Sep; 342():118233. PubMed ID: 37276616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen use efficiency, crop water productivity and nitrous oxide emissions from Chinese greenhouse vegetables: A meta-analysis.
    Gu J; Wu Y; Tian Z; Xu H
    Sci Total Environ; 2020 Nov; 743():140696. PubMed ID: 32653715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global greenhouse vegetable production systems are hotspots of soil N
    Qasim W; Xia L; Lin S; Wan L; Zhao Y; Butterbach-Bahl K
    Environ Pollut; 2021 Mar; 272():116372. PubMed ID: 33434865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain.
    Gao J; Xie Y; Jin H; Liu Y; Bai X; Ma D; Zhu Y; Wang C; Guo T
    PLoS One; 2016; 11(5):e0154773. PubMed ID: 27152647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term variability in N
    Baral KR; Jayasundara S; Brown SE; Wagner-Riddle C
    Sci Total Environ; 2022 Apr; 815():152744. PubMed ID: 34979225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture.
    Menegat S; Ledo A; Tirado R
    Sci Rep; 2022 Aug; 12(1):14490. PubMed ID: 36008570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A global meta-analysis of nitrous oxide emission from drip-irrigated cropping system.
    Kuang W; Gao X; Tenuta M; Zeng F
    Glob Chang Biol; 2021 Jul; 27(14):3244-3256. PubMed ID: 33931928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen.
    Shcherbak I; Millar N; Robertson GP
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9199-204. PubMed ID: 24927583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of crop residue, soil, and fertilizer nitrogen to nitrous oxide emissions varies with long-term crop rotation and tillage.
    Machado PVF; Farrell RE; Deen W; Voroney RP; Congreves KA; Wagner-Riddle C
    Sci Total Environ; 2021 May; 767():145107. PubMed ID: 33550054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-experiment assessment of soil nitrous oxide emissions in sugarcane.
    Galdos MV; Soares JR; Lourenço KS; Harris P; Zeri M; Cunha-Zeri G; Vargas VP; Degaspari IAM; Cantarella H
    Nutr Cycl Agroecosyst; 2023; 127(3):375-392. PubMed ID: 38025204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of N
    Shang Z; Abdalla M; Kuhnert M; Albanito F; Zhou F; Xia L; Smith P
    Environ Pollut; 2020 Apr; 259():113864. PubMed ID: 31896478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigation of yield-scaled nitrous oxide emissions and global warming potential in an oilseed rape crop through N source management.
    Montoya M; Vallejo A; Corrochano-Monsalve M; Aguilera E; Sanz-Cobena A; Ginés C; González-Murua C; Álvarez JM; Guardia G
    J Environ Manage; 2021 Jun; 288():112304. PubMed ID: 33773210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can fertigation reduce nitrous oxide emissions from wheat and canola fields?
    Chai LL; Hernandez-Ramirez G; Dyck M; Pauly D; Kryzanowski L; Middleton A; Powers LA; Lohstraeter G; Werk D
    Sci Total Environ; 2020 Nov; 745():141014. PubMed ID: 32758754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.