These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32892115)

  • 41. High-throughput epitope binning assays on label-free array-based biosensors can yield exquisite epitope discrimination that facilitates the selection of monoclonal antibodies with functional activity.
    Abdiche YN; Miles A; Eckman J; Foletti D; Van Blarcom TJ; Yeung YA; Pons J; Rajpal A
    PLoS One; 2014; 9(3):e92451. PubMed ID: 24651868
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Silicon photonic micro-disk resonators for label-free biosensing.
    Grist SM; Schmidt SA; Flueckiger J; Donzella V; Shi W; Talebi Fard S; Kirk JT; Ratner DM; Cheung KC; Chrostowski L
    Opt Express; 2013 Apr; 21(7):7994-8006. PubMed ID: 23571890
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection of embryonic stem cell lysate biomarkers by surface plasmon resonance with reduced nonspecific adsorption.
    Tyagi D; Perez JB; Nand A; Zhiqiang C; Wang P; Na J; Zhu J
    Anal Biochem; 2015 Feb; 471():29-37. PubMed ID: 25447493
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biosensing by densely packed and optically coupled plasmonic particle arrays.
    Sannomiya T; Sahoo PK; Mahcicek DI; Solak HH; Hafner C; Grieshaber D; Vörös J
    Small; 2009 Aug; 5(16):1889-96. PubMed ID: 19384877
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioassay engineering: a combined label-free and fluorescence approach to optimize HER2 detection in complex biological media.
    Sinibaldi A; Doricchi A; Pileri T; Allegretti M; Danz N; Munzert P; Giordani E; Giacomini P; Michelotti F
    Anal Bioanal Chem; 2020 May; 412(14):3509-3517. PubMed ID: 32300843
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface plasmon resonance: a versatile technique for biosensor applications.
    Nguyen HH; Park J; Kang S; Kim M
    Sensors (Basel); 2015 May; 15(5):10481-510. PubMed ID: 25951336
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multi-analyte surface plasmon resonance biosensing.
    Homola J; Vaisocherová H; Dostálek J; Piliarik M
    Methods; 2005 Sep; 37(1):26-36. PubMed ID: 16199172
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Real-Time Study of the Adsorption and Grafting Process of Biomolecules by Means of Bloch Surface Wave Biosensors.
    Sinibaldi A; Montaño-Machado V; Danz N; Munzert P; Chiavaioli F; Michelotti F; Mantovani D
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33611-33618. PubMed ID: 30152997
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrokinetic lab-on-a-biochip for multi-ligand/multi-analyte biosensing.
    Krishnamoorthy G; Carlen ET; deBoer HL; van den Berg A; Schasfoort RB
    Anal Chem; 2010 May; 82(10):4145-50. PubMed ID: 20402468
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Near infrared surface plasmon resonance phase imaging and nanoparticle-enhanced surface plasmon resonance phase imaging for ultrasensitive protein and DNA biosensing with oligonucleotide and aptamer microarrays.
    Zhou WJ; Halpern AR; Seefeld TH; Corn RM
    Anal Chem; 2012 Jan; 84(1):440-5. PubMed ID: 22126812
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Label-Free Biosensor Imaging on Photonic Crystal Surfaces.
    Zhuo Y; Cunningham BT
    Sensors (Basel); 2015 Aug; 15(9):21613-35. PubMed ID: 26343684
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatially selective photonic crystal enhanced fluorescence and application to background reduction for biomolecule detection assays.
    Chaudhery V; Huang CS; Pokhriyal A; Polans J; Cunningham BT
    Opt Express; 2011 Nov; 19(23):23327-40. PubMed ID: 22109210
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Specific detection of proteins using photonic crystal waveguides.
    Buswell SC; Wright VA; Buriak JM; Van V; Evoy S
    Opt Express; 2008 Sep; 16(20):15949-57. PubMed ID: 18825232
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exploring sensitivity & throughput of a parallel flow SPRi biosensor for characterization of antibody-antigen interaction.
    Kamat V; Rafique A
    Anal Biochem; 2017 May; 525():8-22. PubMed ID: 28223164
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetic analysis of analyte binding by optical biosensors: hydrodynamic penetration of the analyte flow into the polymer matrix reduces the influence of mass transport.
    Witz J
    Anal Biochem; 1999 Jun; 270(2):201-6. PubMed ID: 10334837
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biopharmaceutical production: Applications of surface plasmon resonance biosensors.
    Thillaivinayagalingam P; Gommeaux J; McLoughlin M; Collins D; Newcombe AR
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jan; 878(2):149-53. PubMed ID: 19762290
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface plasmon resonance immunosensor for bacteria detection.
    Baccar H; Mejri MB; Hafaiedh I; Ktari T; Aouni M; Abdelghani A
    Talanta; 2010 Jul; 82(2):810-4. PubMed ID: 20602974
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions.
    Chen K; Zeng Y; Wang L; Gu D; He J; Wu SY; Ho HP; Li X; Qu J; Gao BZ; Shao Y
    J Biomed Opt; 2016 Dec; 21(12):127003. PubMed ID: 27936268
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein-protein binding detection with nanoparticle photonic crystal enhanced microscopy (NP-PCEM).
    Zhuo Y; Tian L; Chen W; Yu H; Singamaneni S; Cunningham BT
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2069-72. PubMed ID: 25570391
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical waveguide sensor based on silica nanotube arrays for label-free biosensing.
    Fan Y; Ding Y; Ma H; Teramae N; Sun S; He Y
    Biosens Bioelectron; 2015 May; 67():230-6. PubMed ID: 25175877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.