BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 32892254)

  • 1. Self-transcriptional repression of the Arabidopsis NAC transcription factor ATAF2 and its genetic interaction with phytochrome A in modulating seedling photomorphogenesis.
    Peng H; Phung J; Zhai Y; Neff MM
    Planta; 2020 Sep; 252(4):48. PubMed ID: 32892254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATAF2 integrates Arabidopsis brassinosteroid inactivation and seedling photomorphogenesis.
    Peng H; Zhao J; Neff MM
    Development; 2015 Dec; 142(23):4129-38. PubMed ID: 26493403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CIRCADIAN CLOCK ASSOCIATED 1 and ATAF2 differentially suppress cytochrome P450-mediated brassinosteroid inactivation.
    Peng H; Neff MM
    J Exp Bot; 2020 Jan; 71(3):970-985. PubMed ID: 31639820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two ATAF transcription factors ANAC102 and ATAF1 contribute to the suppression of cytochrome P450-mediated brassinosteroid catabolism in Arabidopsis.
    Peng H; Neff MM
    Physiol Plant; 2021 Jul; 172(3):1493-1505. PubMed ID: 33491178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic interactions between brassinosteroid-inactivating P450s and photomorphogenic photoreceptors in Arabidopsis thaliana.
    Sandhu KS; Hagely K; Neff MM
    G3 (Bethesda); 2012 Dec; 2(12):1585-93. PubMed ID: 23275881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic and Antagonistic Action of Phytochrome (Phy) A and PhyB during Seedling De-Etiolation in Arabidopsis thaliana.
    Su L; Hou P; Song M; Zheng X; Guo L; Xiao Y; Yan L; Li W; Yang J
    Int J Mol Sci; 2015 May; 16(6):12199-212. PubMed ID: 26030677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COP1 SUPPRESSOR 4 promotes seedling photomorphogenesis by repressing
    Zhao X; Jiang Y; Li J; Huq E; Chen ZJ; Xu D; Deng XW
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11631-11636. PubMed ID: 30352855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging Molecular Links Between Plant Photomorphogenesis and Virus Resistance.
    Zhai Y; Peng H; Neff MM; Pappu HR
    Front Plant Sci; 2020; 11():920. PubMed ID: 32695129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis PSEUDO-RESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling deetiolation and phasing of the circadian clock.
    Kaczorowski KA; Quail PH
    Plant Cell; 2003 Nov; 15(11):2654-65. PubMed ID: 14563930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways.
    Monte E; Alonso JM; Ecker JR; Zhang Y; Li X; Young J; Austin-Phillips S; Quail PH
    Plant Cell; 2003 Sep; 15(9):1962-80. PubMed ID: 12953104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B.
    Wu G; Cameron JN; Ljung K; Spalding EP
    Plant J; 2010 Apr; 62(2):179-91. PubMed ID: 20088903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytochrome A antagonizes PHYTOCHROME INTERACTING FACTOR 1 to prevent over-activation of photomorphogenesis.
    Krzymuski M; Cerdán PD; Zhu L; Vinh A; Chory J; Huq E; Casal JJ
    Mol Plant; 2014 Sep; 7(9):1415-1428. PubMed ID: 25009301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blue light induces degradation of the negative regulator phytochrome interacting factor 1 to promote photomorphogenic development of Arabidopsis seedlings.
    Castillon A; Shen H; Huq E
    Genetics; 2009 May; 182(1):161-71. PubMed ID: 19255368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms.
    Turk EM; Fujioka S; Seto H; Shimada Y; Takatsuto S; Yoshida S; Wang H; Torres QI; Ward JM; Murthy G; Zhang J; Walker JC; Neff MM
    Plant J; 2005 Apr; 42(1):23-34. PubMed ID: 15773851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic linkages between circadian clock-associated components and phytochrome-dependent red light signal transduction in Arabidopsis thaliana.
    Ito S; Nakamichi N; Nakamura Y; Niwa Y; Kato T; Murakami M; Kita M; Mizoguchi T; Niinuma K; Yamashino T; Mizuno T
    Plant Cell Physiol; 2007 Jul; 48(7):971-83. PubMed ID: 17519251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis.
    Casal JJ; Mazzella MA
    Plant Physiol; 1998 Sep; 118(1):19-25. PubMed ID: 9733522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabidopsis FHY1 protein stability is regulated by light via phytochrome A and 26S proteasome.
    Shen Y; Feng S; Ma L; Lin R; Qu LJ; Chen Z; Wang H; Deng XW
    Plant Physiol; 2005 Nov; 139(3):1234-43. PubMed ID: 16244150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TIME FOR COFFEE regulates phytochrome A-mediated hypocotyl growth through dawn-phased signaling.
    Wang Y; Su C; Yu Y; He Y; Wei H; Li N; Li H; Duan J; Li B; Li J; Davis SJ; Wang L
    Plant Cell; 2022 Jul; 34(8):2907-2924. PubMed ID: 35543486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis.
    Soy J; Leivar P; González-Schain N; Sentandreu M; Prat S; Quail PH; Monte E
    Plant J; 2012 Aug; 71(3):390-401. PubMed ID: 22409654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The NAC transcription factor ATAF2 promotes ethylene biosynthesis and response in Arabidopsis thaliana seedlings.
    Peng H; Phung J; Stowe EC; Dhingra A; Neff MM
    FEBS Lett; 2022 Jun; 596(12):1586-1599. PubMed ID: 35170054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.