These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32892372)

  • 1. Endocast structures are reliable proxies for the sizes of corresponding regions of the brain in extant birds.
    Early CM; Iwaniuk AN; Ridgely RC; Witmer LM
    J Anat; 2020 Dec; 237(6):1162-1176. PubMed ID: 32892372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny?
    Watanabe A; Gignac PM; Balanoff AM; Green TL; Kley NJ; Norell MA
    J Anat; 2019 Mar; 234(3):291-305. PubMed ID: 30506962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocast, brain, and bones: Correspondences and spatial relationships in squamates.
    Allemand R; Abdul-Sater J; Macrì S; Di-Poï N; Daghfous G; Silcox MT
    Anat Rec (Hoboken); 2023 Oct; 306(10):2443-2465. PubMed ID: 36602153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast.
    Proffitt JV; Clarke JA; Scofield RP
    J Anat; 2016 Aug; 229(2):228-38. PubMed ID: 26916364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative morphology of snake (Squamata) endocasts: evidence of phylogenetic and ecological signals.
    Allemand R; Boistel R; Daghfous G; Blanchet Z; Cornette R; Bardet N; Vincent P; Houssaye A
    J Anat; 2017 Dec; 231(6):849-868. PubMed ID: 28960295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volume of the crocodilian brain and endocast during ontogeny.
    Jirak D; Janacek J
    PLoS One; 2017; 12(6):e0178491. PubMed ID: 28614349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are endocasts reliable proxies for brains? A 3D quantitative comparison of the extant human brain and endocast.
    Dumoncel J; Subsol G; Durrleman S; Bertrand A; de Jager E; Oettlé AC; Lockhat Z; Suleman FE; Beaudet A
    J Anat; 2021 Feb; 238(2):480-488. PubMed ID: 32996582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Avian palaeoneurology: Reflections on the eve of its 200th anniversary.
    Knoll F; Kawabe S
    J Anat; 2020 Jun; 236(6):965-979. PubMed ID: 31999834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiphase progenetic development shaped the brain of flying archosaurs.
    Beyrand V; Voeten DFAE; Bureš S; Fernandez V; Janáček J; Jirák D; Rauhut O; Tafforeau P
    Sci Rep; 2019 Jul; 9(1):10807. PubMed ID: 31346192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paleoneurology of stem palaeognaths clarifies the plesiomorphic condition of the crown bird central nervous system.
    Widrig KE; Navalón G; Field DJ
    J Morphol; 2024 Jun; 285(6):e21710. PubMed ID: 38760949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flightless birds are not neuroanatomical analogs of non-avian dinosaurs.
    Gold MEL; Watanabe A
    BMC Evol Biol; 2018 Dec; 18(1):190. PubMed ID: 30545287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wulst efferents in the little owl Athene noctua: an investigation of projections to the optic tectum.
    Casini G; Porciatti V; Fontanesi G; Bagnoli P
    Brain Behav Evol; 1992; 39(2):101-15. PubMed ID: 1555108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual endocast of the early Oligocene Cedromus wilsoni (Cedromurinae) and brain evolution in squirrels.
    Bertrand OC; Amador-Mughal F; Silcox MT
    J Anat; 2017 Jan; 230(1):128-151. PubMed ID: 27580644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reappraisal of Cerebavis cenomanica (Aves, Ornithurae), from Melovatka, Russia.
    Walsh SA; Milner AC; Bourdon E
    J Anat; 2016 Aug; 229(2):215-27. PubMed ID: 26553244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain modularity across the theropod-bird transition: testing the influence of flight on neuroanatomical variation.
    Balanoff AM; Smaers JB; Turner AH
    J Anat; 2016 Aug; 229(2):204-14. PubMed ID: 26538376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endomaker, a new algorithm for fully automatic extraction of cranial endocasts and the calculation of their volumes.
    Profico A; Buzi C; Melchionna M; Veneziano A; Raia P
    Am J Phys Anthropol; 2020 Jul; 172(3):511-515. PubMed ID: 32187657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allosaurus, crocodiles, and birds: evolutionary clues from spiral computed tomography of an endocast.
    Rogers SW
    Anat Rec; 1999 Oct; 257(5):162-73. PubMed ID: 10597341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological correspondence between brain and endocranial surfaces in mice exposed to undernutrition during development.
    Bonfili N; Barbeito-Andrés J; Bernal V; Hallgrímsson B; Gonzalez PN
    J Anat; 2022 Jul; 241(1):1-12. PubMed ID: 35132617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genetic basis of neurocranial size and shape across varied lab mouse populations.
    Percival CJ; Devine J; Hassan CR; Vidal-Garcia M; O'Connor-Coates CJ; Zaffarini E; Roseman C; Katz D; Hallgrimsson B
    J Anat; 2022 Aug; 241(2):211-229. PubMed ID: 35357006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new brain endocast of Homo erectus from Hulu Cave, Nanjing, China.
    Wu X; Holloway RL; Schepartz LA; Xing S
    Am J Phys Anthropol; 2011 Jul; 145(3):452-60. PubMed ID: 21541930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.