BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32892897)

  • 1. Environmental fate of radiocesium in biota inhabiting a contaminated ecosystem on the U.S. Department of Energy's Savannah River Site.
    Leaphart JC; Korotasz AM; Bryan AL; Beasley JC
    J Environ Radioact; 2020 Oct; 222():106321. PubMed ID: 32892897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioaccumulation of
    Leaphart JC; Wilms KC; Bryan AL; Beasley JC
    J Environ Radioact; 2019 Jul; 203():25-29. PubMed ID: 30849558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different factors determine
    Ishii Y; Matsuzaki SS; Hayashi S
    J Environ Radioact; 2020 Mar; 213():106102. PubMed ID: 31761685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species-specific biomagnification and habitat-dependent trophic transfer of halogenated organic pollutants in insect-dominated food webs from an e-waste recycling site.
    Liu Y; Luo X; Zeng Y; Tu W; Deng M; Wu Y; Mai B
    Environ Int; 2020 May; 138():105674. PubMed ID: 32234680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Legacy Contaminants in Aquatic Biota in a Stream Associated with Nuclear Weapons Material Production on the Savannah River Site.
    Yu S; Brant HA; Seaman JC; Looney BB; Blas SD; Bryan AL
    Arch Environ Contam Toxicol; 2020 Jul; 79(1):131-146. PubMed ID: 32285161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiocesium in migratory aquatic game birds using contaminated U.S. Department of Energy reactor-cooling reservoirs: A long-term perspective.
    Kennamer RA; Oldenkamp RE; Leaphart JC; King JD; Bryan AL; Beasley JC
    J Environ Radioact; 2017 May; 171():189-199. PubMed ID: 28273599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong contrast of cesium radioactivity between marine and freshwater fish in Fukushima.
    Wada T; Konoplev A; Wakiyama Y; Watanabe K; Furuta Y; Morishita D; Kawata G; Nanba K
    J Environ Radioact; 2019 Aug; 204():132-142. PubMed ID: 31029987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiocesium dynamics in the aquatic ecosystem of Lake Onuma on Mt. Akagi following the Fukushima Dai-ichi Nuclear Power Plant accident.
    Suzuki K; Watanabe S; Yuasa Y; Yamashita Y; Arai H; Tanaka H; Kuge T; Mori M; Tsunoda KI; Nohara S; Iwasaki Y; Minai Y; Okada Y; Nagao S
    Sci Total Environ; 2018 May; 622-623():1153-1164. PubMed ID: 29890584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiocesium (
    Fulghum CM; DiBona ER; Leaphart JC; Korotasz AM; Beasley JC; Bryan AL
    Environ Int; 2019 May; 126():216-221. PubMed ID: 30807958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccumulation and trophic transfer of total mercury through the aquatic food webs of an African sub-tropical wetland system.
    van Rooyen D; Erasmus JH; Gerber R; Nachev M; Sures B; Wepener V; Smit NJ
    Sci Total Environ; 2023 Sep; 889():164210. PubMed ID: 37196965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaccumulation and trophic transfer of antibiotics in the aquatic and terrestrial food webs of the Yellow River Delta.
    Hu T; Zhang J; Xu X; Wang X; Yang C; Song C; Wang S; Zhao S
    Chemosphere; 2023 May; 323():138211. PubMed ID: 36828112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of
    Korotasz AM; Bryan AL
    Arch Environ Contam Toxicol; 2018 Aug; 75(2):273-277. PubMed ID: 29299657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioaccumulation and biomagnification of ultraviolet absorbents in marine wildlife of the Pearl River Estuarine, South China Sea.
    Peng X; Fan Y; Jin J; Xiong S; Liu J; Tang C
    Environ Pollut; 2017 Jun; 225():55-65. PubMed ID: 28347904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiocesium accumulation in aquatic organisms: A global synthesis from an experimentalist's perspective.
    Metian M; Pouil S; Fowler SW
    J Environ Radioact; 2019 Mar; 198():147-158. PubMed ID: 30611082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury speciation, bioavailability, and biomagnification in contaminated streams on the Savannah River Site (SC, USA).
    Xu X; Bryan AL; Mills GL; Korotasz AM
    Sci Total Environ; 2019 Jun; 668():261-270. PubMed ID: 30852203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecological half-life of radiocesium in white-tailed deer on the Department of Energy's Savannah River Site: What can a half century of field monitoring tell us?
    Gaines KF; Novak PM; Novak JM
    J Environ Radioact; 2021 Sep; 235-236():106654. PubMed ID: 34044289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of distribution coefficients and concentration ratios of (90)Sr and (137)Cs in the Techa River and the Miass River.
    Shishkina EA; Pryakhin EA; Popova IY; Osipov DI; Tikhova Y; Andreyev SS; Shaposhnikova IA; Egoreichenkov EA; Styazhkina EV; Deryabina LV; Tryapitsina GA; Melnikov V; Rudolfsen G; Teien HC; Sneve MK; Akleyev AV
    J Environ Radioact; 2016 Jul; 158-159():148-63. PubMed ID: 27105147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environment and food web structure interact to alter the trophic magnification of persistent chemicals across river ecosystems.
    Windsor FM; Pereira MG; Morrissey CA; Tyler CR; Ormerod SJ
    Sci Total Environ; 2020 May; 717():137271. PubMed ID: 32065886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organochlorine pollution in tropical rivers (Guadeloupe): role of ecological factors in food web bioaccumulation.
    Coat S; Monti D; Legendre P; Bouchon C; Massat F; Lepoint G
    Environ Pollut; 2011 Jun; 159(6):1692-701. PubMed ID: 21440344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in south china: Bioaccumulation factors, tissue distribution, and trophic transfer.
    Sun R; Luo X; Tang B; Chen L; Liu Y; Mai B
    Environ Pollut; 2017 Mar; 222():165-174. PubMed ID: 28040337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.