These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32894016)

  • 1. Direct Current Electrokinetic Particle Trapping in Insulator-Based Microfluidics: Theory and Experiments.
    Cardenas-Benitez B; Jind B; Gallo-Villanueva RC; Martinez-Chapa SO; Lapizco-Encinas BH; Perez-Gonzalez VH
    Anal Chem; 2020 Oct; 92(19):12871-12879. PubMed ID: 32894016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle trapping in electrically driven insulator-based microfluidics: Dielectrophoresis and induced-charge electrokinetics.
    Perez-Gonzalez VH
    Electrophoresis; 2021 Dec; 42(23):2445-2464. PubMed ID: 34081787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration.
    Martínez-López JI; Moncada-Hernández H; Baylon-Cardiel JL; Martínez-Chapa SO; Rito-Palomares M; Lapizco-Encinas BH
    Anal Bioanal Chem; 2009 May; 394(1):293-302. PubMed ID: 19190896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The latest advances on nonlinear insulator-based electrokinetic microsystems under direct current and low-frequency alternating current fields: a review.
    Lapizco-Encinas BH
    Anal Bioanal Chem; 2022 Jan; 414(2):885-905. PubMed ID: 34664103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: From induced charge to Joule heating effects.
    Xuan X
    Electrophoresis; 2022 Jan; 43(1-2):167-189. PubMed ID: 33991344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting Particle Mutual Interactions To Enable Challenging Dielectrophoretic Processes.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Anal Chem; 2017 Aug; 89(16):8459-8467. PubMed ID: 28683553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of insulator-based dielectrophoretic devices: Effect of insulator posts characteristics.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    J Chromatogr A; 2015 Nov; 1422():325-333. PubMed ID: 26518498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems.
    Hawkins BG; Kirby BJ
    Electrophoresis; 2010 Nov; 31(22):3622-33. PubMed ID: 21077234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance characterization of an insulator-based dielectrophoretic microdevice.
    Ozuna-Chacón S; Lapizco-Encinas BH; Rito-Palomares M; Martínez-Chapa SO; Reyes-Betanzo C
    Electrophoresis; 2008 Aug; 29(15):3115-22. PubMed ID: 18654979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A continuous DC-insulator dielectrophoretic sorter of microparticles.
    Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR
    J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DC insulator dielectrophoretic applications in microdevice technology: a review.
    Srivastava SK; Gencoglu A; Minerick AR
    Anal Bioanal Chem; 2011 Jan; 399(1):301-21. PubMed ID: 20967429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transitioning Streaming to Trapping in DC Insulator-based Dielectrophoresis for Biomolecules.
    Camacho-Alanis F; Gan L; Ros A
    Sens Actuators B Chem; 2012 Oct; 173():668-675. PubMed ID: 23441049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Sub-Micron Particles by Exploiting Charge Differences with Dielectrophoresis.
    Romero-Creel MF; Goodrich E; Polniak DV; Lapizco-Encinas BH
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 30400429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplification factor in DC insulator-based electrokinetic devices: a theoretical, numerical, and experimental approach to operation voltage reduction for particle trapping.
    Ruz-Cuen R; de Los Santos-Ramírez JM; Cardenas-Benitez B; Ramírez-Murillo CJ; Miller A; Hakim K; Lapizco-Encinas BH; Perez-Gonzalez VH
    Lab Chip; 2021 Nov; 21(23):4596-4607. PubMed ID: 34739022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulator-based dielectrophoretic single particle and single cancer cell trapping.
    Bhattacharya S; Chao TC; Ros A
    Electrophoresis; 2011 Sep; 32(18):2550-8. PubMed ID: 21922497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results.
    Cummings EB; Singh AK
    Anal Chem; 2003 Sep; 75(18):4724-31. PubMed ID: 14674447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water.
    Lapizco-Encinas BH; Davalos RV; Simmons BA; Cummings EB; Fintschenko Y
    J Microbiol Methods; 2005 Sep; 62(3):317-26. PubMed ID: 15941604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulator-based dielectrophoretic focusing and trapping of particles in non-Newtonian fluids.
    Bentor J; Malekanfard A; Raihan MK; Wu S; Pan X; Song Y; Xuan X
    Electrophoresis; 2021 Nov; 42(21-22):2154-2161. PubMed ID: 33938011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AC Insulator-Based Dielectrophoretic Focusing of Particles and Cells in an "Infinite" Microchannel.
    Malekanfard A; Beladi-Behbahani S; Tzeng TR; Zhao H; Xuan X
    Anal Chem; 2021 Apr; 93(14):5947-5953. PubMed ID: 33793209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.