These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 32894154)

  • 1. Prediction of drug-target interactions from multi-molecular network based on LINE network representation method.
    Ji BY; You ZH; Jiang HJ; Guo ZH; Zheng K
    J Transl Med; 2020 Sep; 18(1):347. PubMed ID: 32894154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model.
    Ji BY; You ZH; Cheng L; Zhou JR; Alghazzawi D; Li LP
    Sci Rep; 2020 Apr; 10(1):6658. PubMed ID: 32313121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information.
    Ji BY; You ZH; Chen ZH; Wong L; Yi HC
    BMC Bioinformatics; 2020 Sep; 21(1):401. PubMed ID: 32912137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An effective drug-disease associations prediction model based on graphic representation learning over multi-biomolecular network.
    Jiang H; Huang Y
    BMC Bioinformatics; 2022 Jan; 23(1):9. PubMed ID: 34983364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding.
    Yue Y; He S
    BMC Bioinformatics; 2021 Sep; 22(1):418. PubMed ID: 34479477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-source molecular network representation model for protein-protein interactions prediction.
    Zou HT; Ji BY; Xie XL
    Sci Rep; 2024 Mar; 14(1):6184. PubMed ID: 38485942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GSRF-DTI: a framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph.
    Zhu Y; Ning C; Zhang N; Wang M; Zhang Y
    BMC Biol; 2024 Jul; 22(1):156. PubMed ID: 39020316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Drug-Target Interactions From Multi-Molecular Network Based on Deep Walk Embedding Model.
    Chen ZH; You ZH; Guo ZH; Yi HC; Luo GX; Wang YB
    Front Bioeng Biotechnol; 2020; 8():338. PubMed ID: 32582646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms.
    Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous graph neural network for lncRNA-disease association prediction.
    Shi H; Zhang X; Tang L; Liu L
    Sci Rep; 2022 Oct; 12(1):17519. PubMed ID: 36266433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepWalk based method to predict lncRNA-miRNA associations via lncRNA-miRNA-disease-protein-drug graph.
    Yang L; Li LP; Yi HC
    BMC Bioinformatics; 2022 Feb; 22(Suppl 12):621. PubMed ID: 35216549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and Comprehensive Analysis of a Molecular Association Network via lncRNA-miRNA -Disease-Drug-Protein Graph.
    Guo ZH; Yi HC; You ZH
    Cells; 2019 Aug; 8(8):. PubMed ID: 31405040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the potential human lncRNA-miRNA interactions based on graph convolution network with conditional random field.
    Wang W; Zhang L; Sun J; Zhao Q; Shuai J
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36305458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Drug-Target Interactions Based on Small Positive Samples.
    Hu P; Chan KCC; Hu Y
    Curr Protein Pept Sci; 2018; 19(5):479-487. PubMed ID: 27829343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph embedding ensemble methods based on the heterogeneous network for lncRNA-miRNA interaction prediction.
    Zhao C; Qiu Y; Zhou S; Liu S; Zhang W; Niu Y
    BMC Genomics; 2020 Dec; 21(Suppl 13):867. PubMed ID: 33334307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating multi-scale neighbouring topologies and cross-modal similarities for drug-protein interaction prediction.
    Xuan P; Zhang Y; Cui H; Zhang T; Guo M; Nakaguchi T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CNNDLP: A Method Based on Convolutional Autoencoder and Convolutional Neural Network with Adjacent Edge Attention for Predicting lncRNA-Disease Associations.
    Xuan P; Sheng N; Zhang T; Liu Y; Guo Y
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning Representation of Molecules in Association Network for Predicting Intermolecular Associations.
    Yi HC; You ZH; Guo ZH; Huang DS; Chan KCC
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2546-2554. PubMed ID: 32070992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.