These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32894289)

  • 1. Carbon Neutral: The Failure of Dung Beetles (Coleoptera: Scarabaeidae) to Affect Dung-Generated Greenhouse Gases in the Pasture.
    Fowler F; Denning S; Hu S; Watson W
    Environ Entomol; 2020 Oct; 49(5):1105-1116. PubMed ID: 32894289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying beetle-mediated effects on gas fluxes from dung pats.
    Penttilä A; Slade EM; Simojoki A; Riutta T; Minkkinen K; Roslin T
    PLoS One; 2013; 8(8):e71454. PubMed ID: 23940758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition.
    Piccini I; Arnieri F; Caprio E; Nervo B; Pelissetti S; Palestrini C; Roslin T; Rolando A
    PLoS One; 2017; 12(7):e0178077. PubMed ID: 28700590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of dung beetles in reducing greenhouse gas emissions from cattle farming.
    Slade EM; Riutta T; Roslin T; Tuomisto HL
    Sci Rep; 2016 Jan; 6():18140. PubMed ID: 26728164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the Activity of Coprophagous Insects on Greenhouse Gas Emissions from Cattle Dung Pats and Changes in Amounts of Nitrogen, Carbon, and Energy.
    Iwasa M; Moki Y; Takahashi J
    Environ Entomol; 2015 Feb; 44(1):106-13. PubMed ID: 26308812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treating cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and dung beetles.
    Hammer TJ; Fierer N; Hardwick B; Simojoki A; Slade E; Taponen J; Viljanen H; Roslin T
    Proc Biol Sci; 2016 May; 283(1831):. PubMed ID: 27226475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sampling Efficacy and Survival Rates of Labarrus pseudolividus (Coleoptera: Scarabaeidae) and Onthophagus taurus (Coleoptera: Scarabaeidae) Using Flotation and Sieve-Separation Methodology.
    Fowler F; Wilcox T; Orr S; Watson W
    J Insect Sci; 2020 Nov; 20(6):. PubMed ID: 33135751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of dung beetle species in nitrous oxide emission, ammonia volatilization, and nutrient cycling.
    García CCV; Dubeux JCB; Martini X; Conover D; Santos ERS; Homem BGC; Ruiz-Moreno M; da Silva IAG; Abreu DS; Queiroz LMD; van Cleef FOS; Santos MVF; Fracetto GGM
    Sci Rep; 2023 Mar; 13(1):3572. PubMed ID: 36864179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First field estimation of greenhouse gas release from European soil-dwelling Scarabaeidae larvae targeting the genus Melolontha.
    Görres CM; Kammann C
    PLoS One; 2020; 15(8):e0238057. PubMed ID: 32845917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal and diurnal variations of greenhouse gas emissions from a saline mangrove constructed wetland by using an in situ continuous GHG monitoring system.
    Tsai CP; Huang CM; Yuan CS; Yang L
    Environ Sci Pollut Res Int; 2020 May; 27(13):15824-15834. PubMed ID: 32095962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dung Beetles Increase Greenhouse Gas Fluxes from Dung Pats in a North Temperate Grassland.
    Evans KS; Mamo M; Wingeyer A; Schacht WH; Eskridge KM; Bradshaw J; Ginting D
    J Environ Qual; 2019 May; 48(3):537-548. PubMed ID: 31180435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of feedlot floor condition, deposition frequency, and inhibitors on N
    Liao W; Liu C; Gao Z
    J Air Waste Manag Assoc; 2018 Jul; 68(7):700-712. PubMed ID: 29630461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing.
    Shakoor A; Ashraf F; Shakoor S; Mustafa A; Rehman A; Altaf MM
    Environ Sci Pollut Res Int; 2020 Nov; 27(31):38513-38536. PubMed ID: 32770337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perennial forb invasions alter greenhouse gas balance between ecosystem and atmosphere in an annual grassland in China.
    Zhang L; Wang S; Liu S; Liu X; Zou J; Siemann E
    Sci Total Environ; 2018 Nov; 642():781-788. PubMed ID: 29920464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Provincial cattle carbon emissions from enteric fermentation and manure management in South Africa.
    Tongwane MI; Moeletsi ME
    Environ Res; 2021 Apr; 195():110833. PubMed ID: 33548293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emission of greenhouse gases and soil carbon sequestration in a riparian marsh wetland in central Ohio.
    Nag SK; Liu R; Lal R
    Environ Monit Assess; 2017 Oct; 189(11):580. PubMed ID: 29063197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon dioxide, methane and nitrous oxide emissions from the human-impacted Seine watershed in France.
    Marescaux A; Thieu V; Garnier J
    Sci Total Environ; 2018 Dec; 643():247-259. PubMed ID: 29936166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactive effects of dung deposited onto urine patches on greenhouse gas fluxes from tropical pastures in Kenya.
    Zhu Y; Merbold L; Leitner S; Wolf B; Pelster D; Goopy J; Butterbach-Bahl K
    Sci Total Environ; 2021 Mar; 761():143184. PubMed ID: 33176934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of sugarcane agriculture expansion over low-intensity cattle ranch pasture in Brazil on greenhouse gases.
    Bento CB; Filoso S; Pitombo LM; Cantarella H; Rossetto R; Martinelli LA; do Carmo JB
    J Environ Manage; 2018 Jan; 206():980-988. PubMed ID: 29223108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diurnal variation of CO
    Yang WB; Yuan CS; Tong C; Yang P; Yang L; Huang BQ
    Mar Pollut Bull; 2017 Jun; 119(1):289-298. PubMed ID: 28434669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.